265 research outputs found

    Phylogenetic perspectives on reef fish functional traits

    Get PDF
    Functional traits have been fundamental to the evolution and diversification of entire fish lineages on coral reefs. Yet their relationship with the processes promoting speciation, extinction and the filtering of local species pools remains unclear. We review the current literature exploring the evolution of diet, body size, water column use and geographic range size in reef-associated fishes. Using published and new data, we mapped functional traits on to published phylogenetic trees to uncover evolutionary patterns that have led to the current functional diversity of fishes on coral reefs. When examining reconstructed patterns for diet and feeding mode, we found examples of independent transitions to planktivory across different reef fish families. Such transitions and associated morphological alterations may represent cases in which ecological opportunity for the exploitation of different resources drives speciation and adaptation. In terms of body size, reconstructions showed that both large and small sizes appear multiple times within clades of mid-sized fishes and that extreme body sizes have arisen mostly in the last 10 million years (Myr). The reconstruction of range size revealed many cases of disparate range sizes among sister species. Such range size disparity highlights potential vicariant processes through isolation in peripheral locations. When accounting for peripheral speciation processes in sister pairs, we found a significant relationship between labrid range size and lineage age. The diversity and evolution of traits within lineages is influenced by trait–environment interactions as well as by species and trait–trait interactions, where the presence of a given trait may trigger the development of related traits or behaviours. Our effort to assess the evolution of functional diversity across reef fish clades adds to the burgeoning research focusing on the evolutionary and ecological roles of functional traits. We argue that the combination of a phylogenetic and a functional approach will improve the understanding of the mechanisms of species assembly in extraordinarily rich coral reef communities

    Evolutionary processes underlying latitudinal differences in reef fish biodiversity

    Get PDF
    Aim: To examine the dynamics among the processes of speciation, extinction and dispersal in marine environments using phylogenies to reveal the evolutionary mechanisms that promote latitudinal differences in biodiversity. Using phylogenetic comparative methods we assess whether tropical reef fish lineages show higher diversification rates and whether the majority of extratropical reef fish lineages have originated from tropical areas. Location: Shallow water tropical and extratropical reefs globally. Methods: Using fossil-calibrated phylogenies for four reef-associated fish families (Chaetodontidae, Labridae, Pomacentridae and Sparidae) we apply evolutionary models (GeoSSE and HiSSE) that allow the estimation of speciation, extinction and dispersal rates associated with geographical ranges and explore potential biases from unsampled characters. Results: We found that tropical lineages show higher rates of speciation and tended to have lower extinction rates. Overall, we identify higher net diversification rates for tropical lineages compared with those in extratropical regions in all four families. Rates of dispersal tended to be higher for lineages with tropical origins expanding into extratropical regions. Within the family Labridae, two tropical lineages were found to exhibit higher net diversification rates, above that expected from latitudinal differences. Main conclusions : Our results offer support for the predictions of the out of the tropics' and evolutionary speed' models of evolution, both of which highlight the marine tropics as an important evolutionary engine promoting latitudinal differences in reef fish biodiversity. Moreover, we find that two tropical labrid lineages are undergoing exceptional diversification associated with additional traits, possibly linked with the extreme sexual dichromatism observed in both clades

    Depleted marine fish stocks and ecosystem-based management: on the road to recovery, we need to be precautionary

    Get PDF
    Depleted marine fish stocks and ecosystem-based management: on the road to recovery, we need to be precautionary. -ICES Journal of Marine Science, doi:10.1093/icesjms/fsq158. Precautionary management for fish stocks in need of recovery requires that likely stock increases can be distinguished from model artefacts and that the uncertainty of stock status can be handled. Yet, ICES stock assessments are predominantly deterministic and many EC management plans are designed for deterministic advice. Using the eastern Baltic cod (Gadus morhua) stock as an example, we show how deterministic scientific advice can lead to illusive certainty of a rapid stock recovery and management decisions taken in unawareness of large uncertainties in stock status. By (i) performing sensitivity analyses of key assessment model assumptions, (ii) quantifying the uncertainty of the estimates due to data uncertainty, and (iii) developing alternative stock and ecosystem indicators, we demonstrate that estimates of recent fishing mortality and recruitment of this stock were highly uncertain and show that these uncertainties are crucial when combined with management plans based on fixed reference points of fishing mortality. We therefore call for fisheries management that does not neglect uncertainty. To this end, we outline a four-step approach to handle uncertainty of stock status in advice and management. We argue that it is time to use these four steps towards an ecosystem-based approach to fisheries management

    Latitudinal gradients in Atlantic reef fish communities: trophic structure and spatial use patterns

    Get PDF
    Trophic strategies and spatial use habits were investigated in reef fish communities. The results supported the hypothesis of differential use of food resources among tropical and higher latitude reef fishes, i.e. the number of species and relative abundance of fishes relying on relatively low-quality food significantly decreased from tropical to temperate latitudes. The species : genus ratio of low-quality food consumers increased toward the tropics, and was higher than the overall ratio considering all fishes in the assemblages. This supports the view that higher speciation rates occurred among this guild of fishes in warm waters. It was also demonstrated that density of herbivorous fishes (the dominant group relying on low-quality food resources) in the western Atlantic decreased from tropical to temperate latitudes. Spatial use and mobility varied with latitude and consequently reef type and complexity. Fishes with small-size home ranges predominated on tropical coral reefs. # 2004 The Fisheries Society of the British Isle

    Atlantic reef fish biogeography and evolution

    Get PDF
    Copyright © 2007 The Authors.Journal compilation © 2007 Blackwell Publishing Ltd.AIM: To understand why and when areas of endemism (provinces) of the tropical Atlantic Ocean were formed, how they relate to each other, and what processes have contributed to faunal enrichment. RESULTS: Phylogenetic (proportion of sister species) and distributional (number of shared species) patterns are generally concordant with recognized biogeographical provinces in the Atlantic. The highly uneven distribution of species in certain genera appears to be related to their origin, with highest species richness in areas with the greatest phylogenetic depth. Diversity buildup in Atlantic reef fishes involved (1) diversification within each province, (2) isolation as a result of biogeographical barriers, and (3) stochastic accretion by means of dispersal between provinces. The timing of divergence events is not concordant among taxonomic groups. The three soft (non-terrestrial) inter-regional barriers (mid-Atlantic, Amazon, and Benguela) clearly act as ‘filters’ by restricting dispersal but at the same time allowing occasional crossings that apparently lead to the establishment of new populations and species. Fluctuations in the effectiveness of the filters, combined with ecological differences among provinces, apparently provide a mechanism for much of the recent diversification of reef fishes in the Atlantic

    Nestedness across biological scales

    Get PDF
    Biological networks pervade nature. They describe systems throughout all levels of biological organization, from molecules regulating metabolism to species interactions that shape ecosystem dynamics. The network thinking revealed recurrent organizational patterns in complex biological systems, such as the formation of semi-independent groups of connected elements (modularity) and non-random distributions of interactions among elements. Other structural patterns, such as nestedness, have been primarily assessed in ecological networks formed by two non-overlapping sets of elements; information on its occurrence on other levels of organization is lacking. Nestedness occurs when interactions of less connected elements form proper subsets of the interactions of more connected elements. Only recently these properties began to be appreciated in one-mode networks (where all elements can interact) which describe a much wider variety of biological phenomena. Here, we compute nestedness in a diverse collection of one-mode networked systems from six different levels of biological organization depicting gene and protein interactions, complex phenotypes, animal societies, metapopulations, food webs and vertebrate metacommunities. Our findings suggest that nestedness emerge independently of interaction type or biological scale and reveal that disparate systems can share nested organization features characterized by inclusive subsets of interacting elements with decreasing connectedness. We primarily explore the implications of a nested structure for each of these studied systems, then theorize on how nested networks are assembled. We hypothesize that nestedness emerges across scales due to processes that, although system-dependent, may share a general.Facultad de Ciencias Naturales y Muse

    Nestedness across biological scales

    Get PDF
    Biological networks pervade nature. They describe systems throughout all levels of biological organization, from molecules regulating metabolism to species interactions that shape ecosystem dynamics. The network thinking revealed recurrent organizational patterns in complex biological systems, such as the formation of semi-independent groups of connected elements (modularity) and non-random distributions of interactions among elements. Other structural patterns, such as nestedness, have been primarily assessed in ecological networks formed by two non-overlapping sets of elements; information on its occurrence on other levels of organization is lacking. Nestedness occurs when interactions of less connected elements form proper subsets of the interactions of more connected elements. Only recently these properties began to be appreciated in one-mode networks (where all elements can interact) which describe a much wider variety of biological phenomena. Here, we compute nestedness in a diverse collection of one-mode networked systems from six different levels of biological organization depicting gene and protein interactions, complex phenotypes, animal societies, metapopulations, food webs and vertebrate metacommunities. Our findings suggest that nestedness emerge independently of interaction type or biological scale and reveal that disparate systems can share nested organization features characterized by inclusive subsets of interacting elements with decreasing connectedness. We primarily explore the implications of a nested structure for each of these studied systems, then theorize on how nested networks are assembled. We hypothesize that nestedness emerges across scales due to processes that, although system-dependent, may share a general.Facultad de Ciencias Naturales y Muse

    Population expansion of the invasive Pomacentridae Chromis limbata (Valenciennes, 1833) in Southern Brazilian coast: long-term monitoring, fundamental niche availability and new records

    Get PDF
    Human-mediated species invasions are recognized as a leading cause of global biotic homogenization and extinction. Studies on colonization events since early stages, establishment of new populations and range extension are scarce because of their rarity, difficult detection and monitoring. Chromis limbata is a reef-associated and non-migratory marine fish from the family Pomacentridae found in depths ranging between 3 and 45 m. The original distribution of the species encompassed exclusively the eastern Atlantic, including the Azores, Madeira and the Canary Islands. It is also commonly reported from West Africa between Senegal and Pointe Noire, Congo. In 2008, vagrant individuals of C. limbata were recorded off the east coast of Santa Catarina Island, South Brazil (27° 41' 44″ S, 48° 27' 53″ W). This study evaluated the increasing densities of C. limbata populations in Santa Catarina State shoreline. Two recent expansions, northwards to São Paulo State and southwards to Rio Grande do Sul State, are discussed, and a niche model of maximum entropy (MaxEnt) was performed to evaluate suitable C. limbata habitats. Brazilian populations are established and significantly increasing in most sites where the species has been detected. The distributional boundaries predicted by the model are clearly wider than their known range of occurrence, evidencing environmental suitability in both hemispheres from areas where the species still does not occur. Ecological processes such as competition, predation and specially habitat selectivity may regulate their populations and overall distribution range. A long-term monitoring programme and population genetics studies are necessary for a better understanding of this invasion and its consequences to natural communities.CNPq, Grant/Award Number: CNPq 475367/2006-5; ECOPERE-SE Project; FAPES, Grant/Award Number: PROFIX program No 10/2018 -T.O.: 348/2018; FAPESC, Grant/Award Number: Biodiversidade Marinha do Estado de Santa Catarina Project PI: A.L. FAPESC 4302/2010-8; FAPESC/CNPq, Grant/Award Number: SISBIOTA-Mar project PI: S.R.F. CNPq 563276/2010-0; FAPESC 6308/2011-8; Petrobras (BR), Grant/Award Number: MAArE Project; King Abdullah University of Science and Technology; Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorinfo:eu-repo/semantics/publishedVersio
    • …
    corecore