66 research outputs found
Exome Sequencing and the Management of Neurometabolic Disorders
BACKGROUND: Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level.
METHODS: To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient's clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes.
RESULTS: We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%).
CONCLUSIONS: Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children's Hospital Foundation and others.)
Alterations in expression, binding to ligand and DNA, and transcriptional activity of rearranged and wild-type retinoid receptors in retinoid-resistant acute promyelocytic leukemia cell lines
All-trans retinoic acid (tRA), a naturally occurring ligand of the nuclear retinoic acid receptors (RARs), induces differentiation of leukemic cells and clinical complete remission in patients with acute promyelocytic leukemia (APL). This differentiation effect can also be seen in vitro in both fresh leukemic cells and in the unique permanent APL cell line, NB4. However, APL cells become resistant to RA-induced differentiation both in vitro and in patients. Although pharmacodynamic mechanisms of resistance have been reported, there is growing evidence that resistance both in patients, as well as in vitro, can be mediated by changes in the sensitivity of leukemic cells to retinoids. To investigate possible mechanisms of retinoid resistance, we established subclones of NB4 that are stably resistant to both tRA and 9-cisRA. Unlike the previously reported NB4.306 retinoid-resistant cells, these subclones expressed PML/RAR-alpha RNA and protein, but demonstrated altered ligand binding patterns of PML/RAR-alpha and differed in retinoid-induced gene expression. They were significantly less able to stimulate transcription of an RARE driven CAT-reporter gene on induction by tRA and showed altered DNA binding activity on a RARE. These data suggest that NB4 cells selected for resistance to retinoids demonstrate abnormal ligand binding to PML/RAR-alpha that lead to altered transcriptional activation by retinoids
- …