68 research outputs found

    A self-supervised learning strategy for postoperative brain cavity segmentation simulating resections

    Get PDF
    PURPOSE: Accurate segmentation of brain resection cavities (RCs) aids in postoperative analysis and determining follow-up treatment. Convolutional neural networks (CNNs) are the state-of-the-art image segmentation technique, but require large annotated datasets for training. Annotation of 3D medical images is time-consuming, requires highly trained raters and may suffer from high inter-rater variability. Self-supervised learning strategies can leverage unlabeled data for training. METHODS: We developed an algorithm to simulate resections from preoperative magnetic resonance images (MRIs). We performed self-supervised training of a 3D CNN for RC segmentation using our simulation method. We curated EPISURG, a dataset comprising 430 postoperative and 268 preoperative MRIs from 430 refractory epilepsy patients who underwent resective neurosurgery. We fine-tuned our model on three small annotated datasets from different institutions and on the annotated images in EPISURG, comprising 20, 33, 19 and 133 subjects. RESULTS: The model trained on data with simulated resections obtained median (interquartile range) Dice score coefficients (DSCs) of 81.7 (16.4), 82.4 (36.4), 74.9 (24.2) and 80.5 (18.7) for each of the four datasets. After fine-tuning, DSCs were 89.2 (13.3), 84.1 (19.8), 80.2 (20.1) and 85.2 (10.8). For comparison, inter-rater agreement between human annotators from our previous study was 84.0 (9.9). CONCLUSION: We present a self-supervised learning strategy for 3D CNNs using simulated RCs to accurately segment real RCs on postoperative MRI. Our method generalizes well to data from different institutions, pathologies and modalities. Source code, segmentation models and the EPISURG dataset are available at https://github.com/fepegar/resseg-ijcars

    Microwave studies of the fractional Josephson effect in HgTe-based Josephson junctions

    Full text link
    The rise of topological phases of matter is strongly connected to their potential to host Majorana bound states, a powerful ingredient in the search for a robust, topologically protected, quantum information processing. In order to produce such states, a method of choice is to induce superconductivity in topological insulators. The engineering of the interplay between superconductivity and the electronic properties of a topological insulator is a challenging task and it is consequently very important to understand the physics of simple superconducting devices such as Josephson junctions, in which new topological properties are expected to emerge. In this article, we review recent experiments investigating topological superconductivity in topological insulators, using microwave excitation and detection techniques. More precisely, we have fabricated and studied topological Josephson junctions made of HgTe weak links in contact with two Al or Nb contacts. In such devices, we have observed two signatures of the fractional Josephson effect, which is expected to emerge from topologically-protected gapless Andreev bound states. We first recall the theoretical background on topological Josephson junctions, then move to the experimental observations. Then, we assess the topological origin of the observed features and conclude with an outlook towards more advanced microwave spectroscopy experiments, currently under development.Comment: Lectures given at the San Sebastian Topological Matter School 2017, published in "Topological Matter. Springer Series in Solid-State Sciences, vol 190. Springer

    Legal Facts and Reasons for Action: Between Deflationary and Robust Conceptions of Law’s Reason-Giving Capacity

    Get PDF
    This chapter considers whether legal requirements can constitute reasons for action independently of the merits of the requirement at hand. While jurisprudential opinion on this question is far from uniform, sceptical views are becoming increasingly dominant. Such views typically contend that, while the law can be indicative of pre-existing reasons, or can trigger pre-existing reasons into operation, it cannot constitute new reasons. This chapter offers support to a somewhat less sceptical position, according to which the fact that a legal requirement has been issued can be a reason for action, yet one that is underpinned by bedrock values which law is apt to serve. Notions discussed here include a value-based conception of reasons as facts ; a distinction between complete and incomplete reasons ; and David Enoch’s idea of triggering reason-giving. Following a discussion of criticism against the view adopted here, the chapter concludes by considering some more ‘robust’ conceptions of law’s reason-giving capacity

    Deformation Aware Augmented Reality for Craniotomy using 3D/2D Non-rigid Registration of Cortical Vessels

    Get PDF
    International audienceIntra-operative brain shift is a well-known phenomenon that describes non-rigid deformation of brain tissues due to gravity and loss of cerebrospinal fluid among other phenomena. This has a negative influence on surgical outcome that is often based on pre-operative planning where the brain shift is not considered. We present a novel brain-shift aware Augmented Reality method to align pre-operative 3D data onto the deformed brain surface viewed through a surgical microscope. We formulate our non-rigid registration as a Shape-from-Template problem. A pre-operative 3D wire-like deformable model is registered onto a single 2D image of the cortical vessels, which is automatically segmented. This 3D/2D registration drives the underlying brain structures, such as tumors, and compensates for the brain shift in sub-cortical regions. We evaluated our approach on simulated and real data composed of 6 patients. It achieved good quantitative and qualitative results making it suitable for neurosurgical guidance

    Helping the Designer in Solution Selection: Applications in CAD

    No full text
    In CAD, symbolic geometric solvers allow to solve constraint systems, given under the form of a sketch and a set of constraints, by computing a symbolic construction plan describing how to build the required figure. But a construction plan does not usually define a unique figure, and the selection of the expected figure remains an important topic. This paper expose three methods, automatic or interactive, to help the designer in the exploration of the solution space. These methods guide him towards the expected solution, by basing the construction on the observation of the sketch. A set of examples from a large range of application domains illustrate the di#erent methods
    • 

    corecore