27 research outputs found
Tailoring and evaluating the Wikipedia for in-domain comparable corpora extraction
We propose a language-independent graph-based method to build a-la-carte article collections on user-defined domains from the Wikipedia. The core model is based on the exploration of the encyclopedia's category graph and can produce both mono- and multilingual comparable collections. We run thorough experiments to assess the quality of the obtained corpora in 10 languages and 743 domains. According to an extensive manual evaluation, our graph model reaches an average precision of 84% on in-domain articles, outperforming an alternative model based on information retrieval techniques. As manual evaluations are costly, we introduce the concept of domainness and design several automatic metrics to account for the quality of the collections. Our best metric for domainness shows a strong correlation with human judgments, representing a reasonable automatic alternative to assess the quality of domain-specific corpora. We release the WikiTailor toolkit with the implementation of the extraction methods, the evaluation measures and several utilities
Holography and Variable Cosmological Constant
An effective local quantum field theory with UV and IR cutoffs correlated in
accordance with holographic entropy bounds is capable of rendering the
cosmological constant (CC) stable against quantum corrections. By setting an IR
cutoff to length scales relevant to cosmology, one easily obtains the currently
observed rho_Lambda ~ 10^{-47} GeV^4, thus alleviating the CC problem. It is
argued that scaling behavior of the CC in these scenarios implies an
interaction of the CC with matter sector or a time-dependent gravitational
constant, to accommodate the observational data.Comment: 7 pages, final version accepted by PR
Thermodynamics of viscous dark energy in an RSII braneworld
We show that for an RSII braneworld filled with interacting viscous dark
energy and dark matter, one can always rewrite the Friedmann equation in the
form of the first law of thermodynamics, , at apparent horizon.
In addition, the generalized second law of thermodynamics can fulfilled in a
region enclosed by the apparent horizon on the brane for both constant and time
variable 5-dynamical Newton's constant . These results hold regardless of
the specific form of the dark energy. Our study further support that in an
accelerating universe with spatial curvature, the apparent horizon is a
physical boundary from the thermodynamical point of view.Comment: 11 page
Resummed Quantum Gravity
We present the current status of the a new approach to quantum general
relativity based on the exact resummation of its perturbative series as that
series was formulated by Feynman. We show that the resummed theory is UV finite
and we present some phenomenological applications as well.Comment: 4 pages, 1 figure; presented at ICHEP0
Time Variable Cosmological Constant from Renormalization Group Equations
In this paper, a time variable cosmological constant (CC) from
renormalization group equations (RGEs) is explored, where the renormalization
scale is taken. The cosmological
parameters, such as dimensionless energy density, deceleration parameter and
effective equation of state of CC etc, are derived. Also, the cosmic
observational constraints are implemented to test the model's consistence. The
results show that it is compatible with cosmic data. So, it would be a viable
dark energy model.Comment: 9 pages, 4 figures. the case \mu^2=-\dot{H} and data from CMB shift
parameter R are adde
Mass-Varying Neutrinos from a Variable Cosmological Constant
We consider, in a completely model-independent way, the transfer of energy
between the components of the dark energy sector consisting of the cosmological
constant (CC) and that of relic neutrinos. We show that such a cosmological
setup may promote neutrinos to mass-varying particles, thus resembling a
recently proposed scenario of Fardon, Nelson, and Weiner (FNW), but now without
introducing any acceleronlike scalar fields. Although a formal similarity of
the FNW scenario with the variable CC one can be easily established, one
nevertheless finds different laws for neutrino mass variation in each scenario.
We show that as long as the neutrino number density dilutes canonically, only a
very slow variation of the neutrino mass is possible. For neutrino masses to
vary significantly (as in the FNW scenario), a considerable deviation from the
canonical dilution of the neutrino number density is also needed. We note that
the present `coincidence' between the dark energy density and the neutrino
energy density can be obtained in our scenario even for static neutrino masses.Comment: 8 pages, minor corrections, two references added, to apear in JCA
The Running of the Cosmological and the Newton Constant controlled by the Cosmological Event Horizon
We study the renormalisation group running of the cosmological and the Newton
constant, where the renormalisation scale is given by the inverse of the radius
of the cosmological event horizon. In this framework, we discuss the future
evolution of the universe, where we find stable de Sitter solutions, but also
"big crunch"-like and "big rip"-like events, depending on the choice of the
parameters in the model.Comment: 14 pages, 7 figures, minor improvements, references adde
Observational tests for \Lambda(t)CDM cosmology
We investigate the observational viability of a class of cosmological models
in which the vacuum energy density decays linearly with the Hubble parameter,
resulting in a production of cold dark matter particles at late times.
Similarly to the flat \Lambda CDM case, there is only one free parameter to be
adjusted by the data in this class of \Lambda(t)CDM scenarios, namely, the
matter density parameter. To perform our analysis we use three of the most
recent SNe Ia compilation sets (Union2, SDSS and Constitution) along with the
current measurements of distance to the BAO peaks at z = 0.2 and z = 0.35 and
the position of the first acoustic peak of the CMB power spectrum. We show that
in terms of statistics both models provide good fits to the data and
similar results. A quantitative analysis discussing the differences in
parameter estimation due to SNe light-curve fitting methods (SALT2 and MLCS2k2)
is studied using the current SDSS and Constitution SNe Ia compilations. A
matter power spectrum analysis using the 2dFGRS is also performed, providing a
very good concordance with the constraints from the SDSS and Constitution
MLCS2k2 data.Comment: Revised version, to appear in JCA
Dynamically avoiding fine-tuning the cosmological constant: the "Relaxed Universe"
We demonstrate that there exists a large class of action functionals of the
scalar curvature and of the Gauss-Bonnet invariant which are able to relax
dynamically a large cosmological constant (CC), whatever it be its starting
value in the early universe. Hence, it is possible to understand, without
fine-tuning, the very small current value of the CC as compared to its
theoretically expected large value in quantum field theory and string theory.
In our framework, this relaxation appears as a pure gravitational effect, where
no ad hoc scalar fields are needed. The action involves a positive power of a
characteristic mass parameter, M, whose value can be, interestingly enough, of
the order of a typical particle physics mass of the Standard Model of the
strong and electroweak interactions or extensions thereof, including the
neutrino mass. The model universe emerging from this scenario (the "Relaxed
Universe") falls within the class of the so-called LXCDM models of the cosmic
evolution. Therefore, there is a "cosmon" entity X (represented by an effective
object, not a field), which in this case is generated by the effective
functional and is responsible for the dynamical adjustment of the cosmological
constant. This model universe successfully mimics the essential past epochs of
the standard (or "concordance") cosmological model (LCDM). Furthermore, it
provides interesting clues to the coincidence problem and it may even connect
naturally with primordial inflation.Comment: LaTeX, 63 pp, 8 figures. Extended discussion. Version accepted in
JCA