1,968 research outputs found

    The Possibility of a Non-Lagrangian Theory of Gravity

    Full text link
    General Relativity resembles a very elegant crystal glass: If we touch its principles, that is, its Lagrangian, there is a risk of breaking everything. Or, if we will, it is like a short blanket: Curing some problems creates new problems. This paper is devoted to bring to light the reasons why we pursue the possibility of a non-Lagrangian theory of gravity under the hypothesis of an extension of the original general relativity with an ansatz inspired in the fundamental principles of classical and quantum physics.Comment: 6 pages, 1 figure. Version accepted in Universe MDP

    Nonparametric reconstruction of the Om diagnostic to test LCDM

    Full text link
    Cosmic acceleration is usually related with the unknown dark energy, which equation of state, w(z), is constrained and numerically confronted with independent astrophysical data. In order to make a diagnostic of w(z), the introduction of a null test of dark energy can be done using a diagnostic function of redshift, Om. In this work we present a nonparametric reconstruction of this diagnostic using the so-called Loess-Simex factory to test the concordance model with the advantage that this approach offers an alternative way to relax the use of priors and find a possible 'w' that reliably describe the data with no previous knowledge of a cosmological model. Our results demonstrate that the method applied to the dynamical Om diagnostic finds a preference for a dark energy model with equation of state w =-2/3, which correspond to a static domain wall network.Comment: 10 pages, 5 figures, 2 table

    On detecting CP violation in a single neutrino oscillation channel at very long baselines

    Full text link
    We propose a way of detecting CP violation in a single neutrino oscillation channel at very long baselines (on the order of several thousands of kilometers), given precise knowledge of the smallest mass-squared difference. It is shown that CP violation can be characterized by a shift in L/EL/E of the peak oscillation in the νe\nu_e--νμ\nu_\mu appearance channel, both in vacuum and in matter. In fact, matter effects enhance the shift at a fixed energy. We consider the case in which sub-GeV neutrinos are measured with varying baseline and also the case of a fixed baseline. For the varied baseline, accurate knowledge of the absolute neutrino flux would not be necessary; however, neutrinos must be distinguishable from antineutrinos. For the fixed baseline, it is shown that CP violation can be distinguished if the mixing angle θ13\theta_{13} were known.Comment: 8 pages, 9 figures; minor typos correcte

    DBI Galileon inflation in the light of Planck 2015

    Full text link
    In this work we consider a DBI Galileon (DBIG) inflationary model and constrain its parameter space with the Planck 2015 and BICEP2/Keck array and Planck (BKP) joint analysis data by means of a potential independent analysis. We focus our attention on inflationary solutions characterized by a constant or varying sound speed as well as warp factor. We impose bounds on stringy aspects of the model, such as the warp factor (f)\left(f\right) and the induced gravity parameter (m~)\left(\tilde{m}\right). We study the parameter space of the model and find that the tensor-to-scalar ratio can be as low as r≃6×10−4r\simeq6\times10^{-4} and inflation happens to be at GUT scale. In addition, we obtain the tilt of the tensor power spectrum and test the standard inflationary consistency relation (r=−8nt)\left(r=-8n_{t}\right) against the latest bounds from the combined results of BKP+Laser Interferometer Gravitational-Waves Observatory (LIGO), and find that DBIG inflation predicts a red spectral index for the tensor power spectrum.Comment: Version accepted in JCAP. 25 pages, 10 figures, new refs adde

    Calculating error bars for neutrino mixing parameters

    Full text link
    One goal of contemporary particle physics is to determine the mixing angles and mass-squared differences that constitute the phenomenological constants that describe neutrino oscillations. Of great interest are not only the best fit values of these constants but also their errors. Some of the neutrino oscillation data is statistically poor and cannot be treated by normal (Gaussian) statistics. To extract confidence intervals when the statistics are not normal, one should not utilize the value for chisquare versus confidence level taken from normal statistics. Instead, we propose that one should use the normalized likelihood function as a probability distribution; the relationship between the correct chisquare and a given confidence level can be computed by integrating over the likelihood function. This allows for a definition of confidence level independent of the functional form of the !2 function; it is particularly useful for cases in which the minimum of the !2 function is near a boundary. We present two pedagogic examples and find that the proposed method yields confidence intervals that can differ significantly from those obtained by using the value of chisquare from normal statistics. For example, we find that for the first data release of the T2K experiment the probability that chisquare is not zero, as defined by the maximum confidence level at which the value of zero is not allowed, is 92%. Using the value of chisquare at zero and assigning a confidence level from normal statistics, a common practice, gives the over estimation of 99.5%.Comment: 9 pages, 6 figure

    Measuring the mass of a sterile neutrino with a very short baseline reactor experiment

    Get PDF
    An analysis of the world's neutrino oscillation data, including sterile neutrinos, (M. Sorel, C. M. Conrad, and M. H. Shaevitz, Phys. Rev. D 70, 073004) found a peak in the allowed region at a mass-squared difference Δm2≅0.9\Delta m^2 \cong 0.9 eV2^2. We trace its origin to harmonic oscillations in the electron survival probability PeeP_{ee} as a function of L/E, the ratio of baseline to neutrino energy, as measured in the near detector of the Bugey experiment. We find a second occurrence for Δm2≅1.9\Delta m^2 \cong 1.9 eV2^2. We point out that the phenomenon of harmonic oscillations of PeeP_{ee} as a function of L/E, as seen in the Bugey experiment, can be used to measure the mass-squared difference associated with a sterile neutrino in the range from a fraction of an eV2^2 to several eV2^2 (compatible with that indicated by the LSND experiment), as well as measure the amount of electron-sterile neutrino mixing. We observe that the experiment is independent, to lowest order, of the size of the reactor and suggest the possibility of a small reactor with a detector sitting at a very short baseline.Comment: 4 pages, 2 figure
    • …
    corecore