22 research outputs found

    Extensive myocardial infiltration by hemopoietic precursors in a patient with myelodysplastic syndrome

    Get PDF
    BACKGROUND: Although myocardial infiltration with leukemic blasts is a known finding in patients with acute leukemia, this phenomenon in myelodysplasia is not reported in the literature. Cardiac symptoms in patients with myelodysplasia are often due to anemia and may be due to iron overload and side effects of therapy. CASE PRESENTATION: Herein we report the first case of neoplastic infiltration of the heart with associated myocardial necrosis in a patient with myelodysplasia. It was associated with unicellular and multifocal geographic areas of necrosis in the left ventricle and the interventricular septum. It is likely that cardiac compromise in our patient was due to a combination of restrictive cardiomyopathy due to leukemic infiltration, concomitant anemia, cardiac dilatation, conduction blocks and myocardial necrosis. Myocardial necrosis was most likely due to a combination of ischemic damage secondary to anemia and prolonged hypotension and extensive leukemic infiltration. Markedly rapid decrease in ejection fraction from 66% to 33% also suggests the role of ischemia, since leukemic infiltration is not expected to cause this degree of systolic dysfunction over a 24-hour period. The diagnosis was not suspected during life due to concomitant signs and symptoms of anemia, pulmonary infections, and pericardial and pleural effusions. The patient succumbed to cardiac failure. CONCLUSION: Hemopoietic cell infiltration was not considered in the differential diagnosis and contributed to this patient's morbidity and mortality. This case highlights the clinical importance of considering myocardial infiltration in patients with myelodysplasia and cardiac symptoms

    The Gene Ontology knowledgebase in 2023

    Get PDF
    The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project

    The Gene Ontology knowledgebase in 2023

    Get PDF
    The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project

    Branch Retinal Vein Occlusion: Pathogenesis, Visual Prognosis, and Treatment Modalities

    Get PDF
    In branch retinal vein occlusion (BRVO), abnormal arteriovenous crossing with vein compression, degenerative changes of the vessel wall and abnormal hematological factors constitute the primary mechanism of vessel occlusion. In general, BRVO has a good prognosis: 50–60% of eyes are reported to have a final visual acuity (VA) of 20/40 or better even without treatment. One important prognostic factor for final VA appears to be the initial VA. Grid laser photocoagulation is an established treatment for macular edema in a particular group of patients with BRVO, while promising results for this condition are shown by intravitreal application of steroids or new vascular endothelial growth factor inhibitors. Vitrectomy with or without arteriovenous sheathotomy combined with removal of the internal limiting membrane may improve vision in eyes with macular edema which are unresponsive to or ineligible for laser treatment

    Mitral valve prolapse and mitral insufficiency in two siblings with Gaucher's disease

    No full text
    Gaucher's disease is an autosomal recessive storage disorder. We report two siblings with Gaucher's disease, both of which had mitral valve prolapse and mitral insufficiency. One of the siblings died of bacterial endocarditis and pneumonia, while the other continues under followup

    Therapy-related myelodysplastic syndrome presenting as fulminant heart failure secondary to myeloid sarcoma

    No full text
    Rapidly progressive heart failure is commonly caused by an extensive myocardial infarction, a mechanical complication of infarction, myocarditis, or acute valvular insufficiency. We present an unusual case that was caused by a diffuse infiltration of the myocardium with leukemic cells (myeloid sarcoma). The patient presented with episodic shortness of breath, he was anemic and thrombocytopenic, and his bone marrow biopsy revealed myelodysplastic syndrome from treatment for oligodendroglioma. His clinical course was characterized by a chronic leak of cardiac enzymes, a new right bundle branch block, and a large pericardial effusion causing tamponade and death from fulminant heart failure and ventricular arrhythmias within 2 weeks. At autopsy, the heart was massively infiltrated with myeloblasts and other immature myeloid cells. There was no evidence of acute leukemia in the bone marrow or peripheral blood. Cardiac infiltration in a patient with myelodysplastic syndrome is extremely rare, especially in the absence of bone marrow involvement by blasts. The recognition of this entity is becoming increasingly important as the incidence of cardiac myeloid sarcoma may be on the rise as the number of patients receiving chemotherapy increases
    corecore