11 research outputs found

    Performance evaluation of several well-known and new scintillators for MeV X-ray imaging

    Get PDF
    International audienceDigital X-ray imaging systems for MeV range photon beams are based on a combination of a scintillator screen and either a camera or an amorphous silicon array. To limit dose rate on electronics and enhance imaging device lifetime, the scintillator screen is mirror-coupled to the camera. Performances of such devices are a compromise between exposure time and spatial resolution. These technical characteristics are especially scintillator dependent. In this paper, we present a performance evaluation of six different scintillators with a 9 MeV Bremsstrahlung X-ray source. The tested scintillators are composed of one micro-structured CsI(Tl) scintillator, two phosphor (GOS) screens and three transparent scintillators. These scintillators present a wide range of density, thickness and conversion efficiency. Each scintillator's performance is assessed based on the combination of light output (ADU number) and modulation transfer function (spatial resolution) obtained. The results are helpful to guide design and engineering of high energy imaging devices adapted to specific requirements

    Study of gamma-ray background noise for radioactive waste drum characterization with plastic scintillators

    Get PDF
    In the framework of the radioactive waste drum characterization using neutron coincidence counting, the Nuclear Measurement Laboratory of CEA Cadarache is studying plastic scintillators as an alternative to ideal but costly 3He gas proportional counters. Plastic scintillators are at least 5 times cheaper for the same detection efficiency, and in addition, they detect fast neutrons about three orders of magnitude faster than 3He detectors. However, they are sensitive to gamma rays, which implies the necessity to identify precisely gamma background sources that may affect the useful signal. This paper presents a detailed analysis of the gamma-ray spectrum of a radioactive waste drum containing glove box filters contaminated by plutonium dioxide. Gamma emissions accompanying inelastic scattering (n,n’) and (α,n) reactions that can lead to neutron-gamma coincidences parasitizing useful coincidences from plutonium spontaneous fissions are identified. Some of these parasitic gamma rays having energies up to several MeV, we plan to reject high-energy scintillator pulses with an electronics rejection threshold above 1 MeV, which should preserve the major part of useful fission neutron pulses

    Sorting fission from parasitic coincidences of neutrons and gamma rays in plastic scintillators using particle times of flight

    No full text
    International audienceThis work addresses the use of plastic scintillators as an alternative to 3He detectors for radioactive waste drum characterization. The time response of scintillators is three orders of magnitude faster than that of gas proportional counters and they offer similar neutron detection efficiency at lower cost. However, they are sensitive to gamma rays and the commonly used Pulse Shape Discrimination technique is not possible with basic PVT scintillators. This paper reports on an innovative data processing technique allowing to extract spontaneous fission events from parasitic coincidences, such as those from the (α,n) reactions accompanied by correlated gamma rays or from pure gamma-ray sources emitting correlated radiations. The proposed approach makes advantage of differences in the pulse detection times recorded in measurements with the 252Cf, AmBe and 60Co sources. More precisely, a 2D histogram of time delays between the detected 2nd and 1st pulses, on the x-axis, and between the 3rd and 2nd pulses, on the y-axis, is found to allow for selection of a region of interest most relevant to spontaneous fission events.</jats:p

    Pulsed neutron interrogation with PVT plastic scintillators to detect nuclear materials

    No full text
    International audienceIn the framework of homeland security, the Nuclear Measurements Laboratory of CEA Cadarache is studying the detection of Special Nuclear Materials hidden in sea-going cargo containers. Proof of principle experiments done in the DANAIDES facility of CEA Cadarache shows the feasibility of detecting some dozen of grams of highly enriched uranium by means of neutron interrogation with a 14 MeV D-T pulsed neutron generator and an array of EJ-200 plastic scintillators. We show that uranium can be detected by measuring correlated induced-fission prompt neutrons and gamma rays in coincidence, which is a first attempt with such detectors without neutron-gamma PSD capabilities, or more classically by detecting fission-induced delayed gamma rays

    Status of the nuclear measurement stations for theprocess control of spent fuel reprocessing at AREVA NC/La Hague

    No full text
    International audienceNuclear measurements are used at AREVA NC/La Hague for the monitoring of spent fuel reprocessing. The process control is based on gamma-ray spectrometry, passive neutron counting and active neutron interrogation, and gamma transmission measurements. The main objectives are criticality-safety, online process monitoring, and the determination of the residual fissile mass and activities in the metallic waste remaining after fuel shearing and dissolution (empty hulls, grids, end pieces), which are put in radioactive waste drums before compaction in stainless steel containers. The whole monitoring system is composed of eight measurement stations which will be described in this paper. The main measurement stations n°1, 3 and 7 are needed for criticality control. Before fuel element shearing for dissolution, station n°1 allows determining the burn-up of the irradiated fuel by gamma-ray spectrometry with HP Ge (high purity germanium) detectors. The burn-up is correlated to the 137^{137}Cs and 134^{134}Cs gamma emission rates. The fuel maximal mass which can be loaded in one bucket of the dissolver is estimated from the lowest burn-up fraction of the fuel element. Station n°3 is dedicated to the control of the correct fuel dissolution, which is performed with a 137^{137}Cs gamma ray measurement with a HP Ge detector. Station n°7 allows estimating the residual fissile mass in the drums filled with the metallic residues, especially the hulls, from passive neutron counting (spontaneous fission and alpha-n reactions) and active interrogation (fission prompt neutrons induced by a pulsed neutron generator) with proportional 3^3He detectors. So far, large campaigns of reprocessing of the UOX fuels with a burn-up rate up to 60 GWd/t have been performed at AREVA/La Hague. This paper presents a brief overview of the current status of the nuclear measurement station

    Studies of uranium carbide targets of a high density

    No full text
    Production of Cs and Fr isotopes from UC targets of high density has been investigated at IRIS. The production yields and the release efficiencies of 4.5 g/cm^2 and 91 g/cm^2 targets are compared
    corecore