68 research outputs found

    First principle electronic, structural, elastic, and optical properties of strontium titanate

    Get PDF
    We report self-consistent ab-initio electronic, structural, elastic, and optical properties of cubic SrTiO3_{3} perovskite. Our non-relativistic calculations employed a generalized gradient approximation (GGA) potential and the linear combination of atomic orbitals (LCAO) formalism. The distinctive feature of our computations stem from solving self-consistently the system of equations describing the GGA, using the Bagayoko-Zhao-Williams (BZW) method. Our results are in agreement with experimental ones where the later are available. In particular, our theoretical, indirect band gap of 3.24 eV, at the experimental lattice constant of 3.91 \AA{}, is in excellent agreement with experiment. Our predicted, equilibrium lattice constant is 3.92 \AA{}, with a corresponding indirect band gap of 3.21 eV and bulk modulus of 183 GPa.Comment: 11 pages, 6 figures,Accepted for publication in AIP Advances (2012

    Study of off-diagonal disorder using the typical medium dynamical cluster approximation

    Get PDF
    We generalize the typical medium dynamical cluster approximation (TMDCA) and the local Blackman, Esterling, and Berk (BEB) method for systems with off-diagonal disorder. Using our extended formalism we perform a systematic study of the effects of non-local disorder-induced correlations and of off-diagonal disorder on the density of states and the mobility edge of the Anderson localized states. We apply our method to the three-dimensional Anderson model with configuration dependent hopping and find fast convergence with modest cluster sizes. Our results are in good agreement with the data obtained using exact diagonalization, and the transfer matrix and kernel polynomial methods.Comment: 10 pages, 8 figure

    Re-examining the electronic structure of germanium: A first-principle study

    Get PDF
    We report results from an efficient, robust, ab-initio method for self-consistent calculations of electronic and structural properties of Ge. Our non-relativistic calculations employed a generalized gradient approximation (GGA) potential and the linear combination of atomic orbitals (LCAO) formalism. The distinctive feature of our computations stem from the use of Bagayoko-Zhao-Williams-Ekuma-Franklin (BZW-EF) method. Our results are in agreement with experimental ones where the latter are available. In particular, our theoretical, indirect band gap of 0.65 eV, at the experimental lattice constant of 5.66 \AA{}, is in excellent agreement with experiment. Our predicted, equilibrium lattice constant is 5.63 \AA{}, with a corresponding indirect band gap of 0.65 eV and a bulk modulus of 80 GPa. We also calculated the effective masses in various directions with respect to the Γ\Gamma point.Comment: 10 Pages, 3 Figures, and 1 tabl
    • …
    corecore