227 research outputs found

    A Graphene Field-Effect Device

    Full text link
    In this letter, a top-gated field effect device (FED) manufactured from monolayer graphene is investigated. Except for graphene deposition, a conventional top-down CMOS-compatible process flow is applied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from top-gated Graphene-FEDs. The extracted values exceed the universal mobility of silicon and silicon-on-insulator MOSFETs.Comment: 12 pages, 3 figure

    Bistability and oscillatory motion of natural nano-membranes appearing within monolayer graphene on silicon dioxide

    Full text link
    The recently found material graphene is a truly two-dimensional crystal and exhibits, in addition, an extreme mechanical strength. This in combination with the high electron mobility favours graphene for electromechanical investigations down to the quantum limit. Here, we show that a monolayer of graphene on SiO2 provides natural, ultra-small membranes of diameters down to 3 nm, which are caused by the intrinsic rippling of the material. Some of these nano-membranes can be switched hysteretically between two vertical positions using the electric field of the tip of a scanning tunnelling microscope (STM). They can also be forced to oscillatory motion by a low frequency ac-field. Using the mechanical constants determined previously, we estimate a high resonance frequency up to 0.4 THz. This might be favorable for quantum-electromechanics and is prospective for single atom mass spectrometers.Comment: 9 pages, 4 figure

    Non-volatile switching in graphene field effect devices

    Full text link
    The absence of a band gap in graphene restricts its straight forward application as a channel material in field effect transistors. In this letter, we report on a new approach to engineer a band gap in graphene field effect devices (FED) by controlled structural modification of the graphene channel itself. The conductance in the FEDs is switched between a conductive "on-state" to an insulating "off-state" with more than six orders of magnitude difference in conductance. Above a critical value of an electric field applied to the FED gate under certain environmental conditions, a chemical modification takes place to form insulating graphene derivatives. The effect can be reversed by electrical fields of opposite polarity or short current pulses to recover the initial state. These reversible switches could potentially be applied to non-volatile memories and novel neuromorphic processing concepts.Comment: 14 pages, 4 figures, submitted to IEEE ED

    Intrinsic and extrinsic corrugation of monolayer graphene deposited on SiO2

    Full text link
    Using scanning tunneling microscopy (STM) in ultra high vacuum and atomic force microscopy, we investigate the corrugation of graphene flakes deposited by exfoliation on a Si/SiO2 (300 nm) surface. While the corrugation on SiO2 is long-range with a correlation length of about 25 nm, some of the graphene monolayers exhibit an additional corrugation with a preferential wave length of about 15 nm. A detailed analysis shows that the long range corrugation of the substrate is also visible on graphene, but with a reduced amplitude, leading to the conclusion that the graphene is partly freely suspended between hills of the substrate. Thus, the intrinsic rippling observed previously on artificially suspended graphene can exist as well, if graphene is deposited on SiO2.Comment: 10 pages, 11 figures, including supplementary materia

    Anisotropic photoconductivity in graphene

    Get PDF
    We investigate the photoconductivity of graphene within the relaxation time approximation. In presence of the inter-band transitions induced by the linearly polarized light the photoconductivity turns out to be highly anisotropic due to the pseudospin selection rule for Dirac-like carriers. The effect can be observed in clean undoped graphene samples and be utilized for light polarization detection.Comment: 4 pages, 2 figure

    Minimum Information about a Neuroscience Investigation (MINI) Electrophysiology

    Get PDF
    This module represents the formalized opinion of the authors and the CARMEN consortium, which identifies the minimum information required to report the use of electrophysiology in a neuroscience study, for submission to the CARMEN system (www.carmen.org.uk).
&#xa

    Mars Colonization Problems

    Get PDF
    In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs)

    Nonperturbative harmonic generation in graphene from intense midinfrared pulsed light

    Get PDF
    In solids, high harmonic radiation arises from the subcycle dynamics of electrons and holes under the action of an intense laser field. The strong-field regime opens new opportunities to understand and control carrier dynamics on ultrafast time scales, including the coherent dynamics of quasiparticles such as massless Dirac fermions. Here, we irradiate monolayer and few-layer graphene with intense infrared light to produce nonperturbative harmonics of the fundamental up to the seventh order. We find that the polarization dependence shows surprising agreement with gas-phase harmonics. Using a two-band model, we explore the nonlinear current due to electrons near the Dirac points, and we discuss the interplay between intraband and interband contributions to the harmonic spectrum. This interplay opens new opportunities to access ultrafast and strong-field physics of graphene.Peer reviewed: YesNRC publication: Ye

    Surface energy engineering of graphene

    Full text link
    Contact angle goniometry is conducted for epitaxial graphene on SiC. Although only a single layer of epitaxial graphene exists on SiC, the contact angle drastically changes from 69{\deg} on SiC substrates to 92{\deg} with graphene. It is found that there is no thickness dependence of the contact angle from the measurements of single, bi, and multi layer graphene and highly ordered pyrolytic graphite (HOPG). After graphene is treated with oxygen plasma, the level of damage is investigated by Raman spectroscopy and correlation between the level of disorder and wettability is reported. By using low power oxygen plasma treatment, the wettability of graphene is improved without additional damage, which can solve the adhesion issues involved in the fabrication of graphene devices
    corecore