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Non-perturbative Harmonic Generation in Graphene from Intense
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M. Taucer,∗ T. J. Hammond, P. B. Corkum, and G. Vampa
Joint Attosecond Science Laboratory, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
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In solids, high harmonic radiation arises from the sub-cycle dynamics of electrons and holes
under the action of an intense laser field. The strong field regime opens new opportunities to
understand and control carrier dynamics on ultrafast time scales, including the coherent dynamics of
quasiparticles such as massless Dirac fermions. Here, we irradiate monolayer and few-layer graphene
with intense infrared light to produce non-perturbative harmonics of the fundamental up to the
7th order. We find that the polarization dependence shows surprising agreement with gas phase
harmonics. Using a two-band model, we explore the nonlinear current due to electrons near the
Dirac points, and we discuss the interplay between intraband and interband contributions to the
harmonic spectrum. This interplay opens new opportunities to access ultrafast and strong-field
physics of graphene.

I. INTRODUCTION

The interaction of intense light with atoms and
molecules, mainly in the gas phase, produces high har-
monics. This non-perturbative process occurs when elec-
trons are pulled away from their host atoms or molecules
in the laser field and accelerated back toward the host ion
as the field reverses. If the electron and ion recombine,
they emit coherent high energy photons1. The success of
strong field physics for gas phase atoms and molecules
has motivated a search for similar effects in the solid
state. Recently, high harmonic emission has been ob-
served from a range of solids2–4, including ZnO5,6, sil-
icon7, and recently transition metal dichalcogenides8,9.
The observations are important because the high har-
monics are not only a unique source of radiation, they
are also a new way of studying material. Important for
this paper, high harmonic generation in the solid state
opens the possibility of studying the high field response
of novel materials and confined systems of low dimension-
ality. Two-dimensional materials, in particular, exhibit
unique electronic properties and quasiparticles, including
massless Dirac fermions in graphene.

Non-linear optical properties of graphene have been
an active area of research recently, with demonstrations
of perturbative processes including four-wave mixing10

and third harmonic generation11. Beyond this, the non-
perturbative, strong-field regime has also been the focus
of theoretical and experimental work. Early studies pre-
dicted highly efficient high harmonic generation due to
the motion of carriers in the unusual band structure of
graphene12,13, and subsequent theoretical work has re-
vealed the importance of the subtle interplay between in-
terband and intraband processes14–17. Meanwhile, there
have been predictions of new effects in the strong-field

regime for wavelengths from the THz to the optical part
of the electromagnetic spectrum, including ultrafast in-
terferometry and signatures of Berry phase18, as well as
a recent prediction of plasmonic enhancement of high
harmonic generation19. Experimentally, the strong-field
regime has been studied in the THz regime, showing ev-
idence of odd harmonics up to the fifth order20,21, in
agreement with theory14,15,22.

Here, we measure the intensity and polarization depen-
dence of non-perturbative harmonics generated in mon-
layer and few-layer graphene. We compare the polar-
ization dependence with predictions of the gas phase re-
collision model, showing striking agreement. Using a two-
band model, we consider the contributions of interband
and intraband currents. While the intraband contribu-
tion is greater, we discuss the possibility of observing
their coherent interplay due to an intensity-dependent
phase difference. This opens a new route to experi-
mentally accessing strong-field and ultrafast processes in
graphene.

Graphene consists of a single atomic layer of carbon
arranged in a honeycomb lattice. Its crystal structure,
together with the sp2 bonding of its constituent atoms,
leads to the unique band structure shown in Fig. 1a. The
out-of-plane p-orbitals, treated here within the nearest-
neighbour tight-binding model, give rise to a zero band
gap and linear dispersion at the K and K’ points (also
known as Dirac points) in reciprocal space23, shown as
different coloured stars in Fig. 1b. In the so-called Dirac
cones near these high-symmetry points, electrons and
holes act as massless Fermions, with a constant velocity
(the Fermi velocity) of vF =

√
3at0/2h̄, where a = 2.46 Å

is the lattice constant, and t0 = 2.9 eV is an energy de-
scribing hopping between nearest neighbours24. A small
gap, less than 1 meV, is present as a result of spin-orbit
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FIG. 1. (a) Band structure of graphene within the nearest-
neighbour tight-binding approximation. Conduction and va-
lence bands are shown in blue and red, respectively. (b) Re-
ciprocal space, with reciprocal lattice sites shown as circular
dots, including the Γ point at the origin. Dirac points are
indicated by stars, with different colors for the inequivalent
K and K’ points. The dotted line shows the boundary of
the first Brillouin zone. (c) Electron velocity in the conduc-
tion band, as a function of reciprocal space coordinate. Color
represents the magnitude of velocity, and arrows indicate its
direction. (d) Transition dipole moment as a function of re-
ciprocal space coordinate. Color shows the magnitude on a
logarithmic scale, and the direction is indicated by arrows.
Unless otherwise indicated, we use atomic units.

coupling25. Fig. 1c shows the velocity of electrons in the
conduction band. Near the Dirac points, the electron
velocity points radially outward with a nearly constant
magnitude. The coupling between bands in the optical
field is given by the transition dipole moment, shown in
Fig. 1d, which diverges at the Dirac points and has op-
posite curls for the K and K’ points26.

II. EXPERIMENTAL DETAILS

Two sets of samples were prepared for the measure-
ments, multi- and single-layer graphene. For the multi-
layer samples, graphene was mechanically exfoliated from
bulk graphite onto a layer of polymethyl methacrylate
(PMMA) and characterized by atomic-force-microscopy
yielding thicknesses in the range of 5-15 nm. Subse-
quently, the graphene flakes including the PMMA sup-
port were transferred onto the sapphire target substrate
(Al2O3, c-plane (0001) with a thickness of 500 µm) and

the PMMA removed with acetone. Single layer graphene
samples were prepared from commercially sourced CVD-
grown graphene on copper foil. Using PMMA as a sup-
port, the copper foil was etched away and the PMMA
graphene stack transferred to the 500 µm thick sapphire
target substrate. The PMMA supporting layer was then
removed with acetone.

Our measurements were performed on the 100 Hz rep-
etition rate laser at the Advanced Laser Light Source
(ALLS). We generated harmonics using femtosecond
pulses with central wavelengths between 3.1 and 3.9 µm.
The pulse duration was 70 fs, and pulse energies were
between 3 and 16 µJ. The Rayleigh length was 8-10 mm.
In order to avoid damage and to increase signal during
the experiments, we moved the monolayer sample four to
five centimeters in front of the focus. This allowed us to
increase the pulse energy for a given peak intensity by
increasing the beam width at the sample. Pulse intensi-
ties were in the range of 5.7× 1010 to 5.5× 1011 W/cm2.
The latter is found to be just below the threshold for
damage. All reported intensities in this article refer to
vacuum intensities.

III. RESULTS AND DISCUSSION

Fig. 2a shows a harmonic spectrum covering the 5th
and 7th order acquired from few-layer graphene with
a driving wavelength of 3.6 µm and an intensity of
5.5×1011 W/cm2. Fig. 2b shows the harmonic spectrum
near the 5th harmonic from a single layer of graphene
with a driving wavelength of 3.1 µm and an intensity
of 5.7 × 1010 W/cm2. Fig. 2c shows the intensity of
emitted harmonics as a function of the intensity of the
incident fundamental. Solid lines show the theoretical
prediction of the two band model, described in more de-
tail below. Theoretical fits for the fifth and seventh har-
monic are each scaled by an arbitrary factor. The pre-
dicted ratio between these harmonics is indicated by the
vertical dashed line, which shows that our theory under-
estimates their difference. Theory and experiment both
show non-perturbative scaling roughly characterized by
a power law (∝ I2).

The harmonic peaks are broader in the few-layer sam-
ple compared to the monolayer, as shown in Fig. 2d,
where monolayer and few-layer sample results are com-
pared at the same driving wavelength; the full-width at
half maximum of the fifth harmonic peak increases from
24 nm to 44 nm. We attribute this to self-phase modu-
lation, which causes a distortion of the driving pulse as
it propagates through the few-layer graphene. The non-
linear index of few- and single-layer graphene has been
estimated to be in the range of 10−7 to 10−9 cm2/W27–30.
The broadening we observe is consistent with a large non-
linear index on the order of 10−9 cm2/W (see Appendix
A).

In all cases, we observed a clear dependence on elliptic-
ity of the incident pulse, with harmonic intensity falling
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FIG. 2. (a) Harmonic spectrum from few-layer graphene with
a driving wavelength of 3.6 µm, intensity of 5.5×1011 W/cm2,
and beam diameter of 100 µm. The ratio of the 5th harmonic
intensity to the 7th is approximately 50. (b) Harmonic spec-
trum from single-layer graphene with a driving wavelength of
3.1 µm, intensity of 5.7 × 1010 W/cm2, and beam diameter
of 500 µm. Vertical lines in the background indicate the ex-
pected wavelengths of odd harmonics. (c) Intensity scaling
for fifth and seventh harmonic of few-layer graphene, showing
non-perturbative scaling for both. Solid lines show theory,
scaled by an arbitrary factor for each harmonic. The actual
ratio predicted by theory is indicated by the vertical dashed
line. (d) Fifth harmonic of few-layer and monolayer graphene
at equal driving wavelengths of 3.1 µm, showing a broadened
peak for the few-layer sample. Intensities are equal to those
of panels (a) and (b), respectively.

by more than one order of magnitude for an ellipticity
parameter of 0.5 relative to the response to linear po-
larization (Fig. 3). Measurements of ellipticity depen-
dence were performed with incident pulse energy held
constant. For comparison, the dashed line shows a repre-
sentative calculated curve for gas phase harmonics for the
same wavelength and intensity as we used in our exper-
iment31,32. It is striking that the decay of the harmonic
intensity with ellipticity in graphene is very similar to
what is expected for gas phase high harmonic generation.

While a six-fold symmetry is expected for the depen-
dence of harmonic generation on the angle of linear po-
larization with respect to the crystal structure, no depen-
dence was observed experimentally. This may reflect the
high degree of rotational symmetry in the band struc-
ture in the vicinity of the Dirac points, as described in
the simulations presented below.

To assist interpretation of our results, we use a semi-

classical model of high harmonic generation. The polar-
ization, p(K, t), and valence and conduction band popu-
lations, nv,c(K, t), in the transformed frame K ≡ k−A(t)
(where A(t) is the vector potential) are found by solving
a pair of coupled differential equations, as described in
detail in Refs33 and34. The inter- and intraband current
densities, jer and jra, are then given by

jer =
d

dt

∫
BZ

p(K, t)dK (1)

and

jra =
∑
m=v,c

∫
BZ

nm(K, t)vm(k)dK (2)

where vm(k) = ∇kEm(k) is the carrier velocity in each
band, and the integrals are taken over the first Brillouin
zone, BZ. The coherent sum of these oscillating currents
can account for the generation of high harmonics. Our
approach is similar to recent density-matrix calculations
for the strong-field response of graphene14–17, which have
primarily focused on the THz regime. In our calculations,
we treat the case of a Fermi level at the Dirac point, since
expected variations in the Fermi level do not have a sig-
nificant effect on the predicted high harmonic spectra
(see Appendix A). Our calculations focus on monolayer
graphene, while our experiments were performed on both
monolayer and multilayer graphene samples. We there-
fore do not consider here the effects of graphene multi-
layers, where the bandstructure is somewhat altered35,36.

Fig. 4a shows the average conduction band occupa-
tion for the entire Brillouin zone as a function of time,
with the laser field also plotted (green line). The popula-
tion transfer from valence to conduction band generally
follows the pulse envelope. In addition to this smooth
transfer of population, however, sharper small steps can
be seen, at a frequency corresponding to half of the laser
cycle. These rapid steps in population transfer contribute
to the generation of harmonics and can be considered as
analogous to plasma harmonics in the gas phase37. They

FIG. 3. Normalized fifth harmonic intensity as a function
of ellipticity of incident pulse for few-layer and monolayer
graphene. The dashed line shows the harmonic intensity
dependence expected for high harmonic generation in Neon
gas for a driving wavelength of 3.2 µm and an intensity of
5 × 1011W/cm2.
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FIG. 4. Simulation of harmonic generation in single layer graphene, for a linearly polarized pulse oriented along the y-axis.
(a) Total conduction band population as a function of time (red line and shaded area). As a reference, the green line shows
the electric field of the optical pulse. (b) Conduction band population at the end of the pulse as function of reciprocal
space coordinate. (c) Simulated harmonic spectrum with intraband (red) and interband (blue) components shown separately.
λ = 3.1 µm, I0 = 1011 W/cm2, and T2 = 2 fs. (d) Phases of intraband and interband components for the fifth and seventh
harmonic order as a function of incident intensity. (e) Intensities of intraband and interband components for the fifth and
seventh harmonic order as a function of the dephasing time constant, T2.

contribute to the intraband current through nm(K, t) in
Equation 2.

The conduction band population in reciprocal space at
the end of the pulse (Fig. 4b) shows that population is
transferred primarily at the Dirac points. Populations
of electrons and holes also respond to the laser field by
moving in reciprocal space, following the vector poten-
tial. This is illustrated by Video S1, in the Supplemen-
tary Material, which shows polarization and conduction
band population in reciprocal space as a function of time.
The field of the pulse first induces a polarization within
the graphene, tightly centered at the K and K’ points,
which causes a transfer of population from valence to
conduction band. The resulting electron population, also
centered at the K and K’ points, oscillates in the laser
field, following the vector potential. The hole population
in the valence band oscillates in precisely the same way,
which is not shown in the video. As carriers move in re-
ciprocal space and cross the Dirac points, their velocities
rapidly switch between approximately ±vF , which also
contributes to the intraband harmonic spectrum.

The interplay between the population dynamics and
nonlinear motion in the energy bands gives rise to the
simulated harmonic spectrum shown in Fig. 4c. Blue
and red curves correspond to the interband and intra-
band contributions, respectively, as defined in Equations
1 and 2. The intraband contribution dominates through-
out. However, unlike in the case of THz drivers14, there
is a non-negligible contribution from the interband cur-
rents, which opens the possibility to observe an intensity-
dependent interference between interband and intraband
contributions (Fig. 4d), in an analogous manner to the

long and short trajectories in gas phase high harmonic
generation38,39. Furthermore the relative strength of the
two contributions is found to be sensitively dependent
upon the dephasing time, T2, which is expected to be
on the order of one or a few femtoseconds (see Fig. 4e).
This shows that high harmonic experiments in the mid-
infrared open new opportunities to access ultrafast and
strong-field physics of graphene.

IV. CONCLUSION

In conclusion, we have experimentally observed non-
perturbative harmonic generation from monolayer and
few-layer graphene up to the fifth and seventh order, re-
spectively, using driving wavelengths of 3 to 4 µm. The
dependence of harmonic emission upon incident elliptic-
ity is similar to what is predicted for gas-phase high har-
monic generation for the same wavelength light. In our
experiments, harmonic generation is limited by damage
at high intensities. The damage threshold of graphene
can be increased by using a suitable substrate, such as
hexagonal boron nitride40. This suggests a way to ex-
tend harmonic generation to higher orders in future ex-
periments, which will allow new probes of the generation
mechanism6 and of electronic structure3,41.

Non-perturbative harmonic generation in graphene
from mid-infared pulsed light opens new possibilities for
studying, and ultimately controlling, the dynamics of
massless Dirac fermions in the strong-field regime. Based
on our results, we expect an experimentally observable
coherent interplay between interband and intraband gen-
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eration mechanisms. The coherent control of carrier
populations in graphene’s unique band structure holds
promise for ultra-high speed electronics42 and optoelec-
tronics43,44. Finally, we note that non-perturbative har-
monic generation in a single atomic layer also suggests
the possibility of applying high harmonic generation to
the field of surface science.

FIG. 5. Simulated fifth harmonic spectrum in the absence
of self-phase modulation, representing a graphene monolayer
(black), and including self-phase modulation, representing
few-layer graphene (blue). A few-layer graphene thickness
of 5 nm of graphene and a nonlinear index of n2 = −0.5 ×
10−9 cm2/W are assumed.

Appendix A: Spectral Broadening and Fermi Level
Variation

In order to understand the effect of self-phase modu-
lation on the harmonics generated in few-layer graphene,
we consider the propagation of the fundamental in 5 nm
of graphene, at an intensity of 1011 W/cm2. The sim-
ulation is the same as the one presented in the main
text, except that the fundamental field is distorted by its
propagation in the graphene. We found that a nonlin-
ear index of n2 = −0.5 × 10−9 cm2/W reproduces the
spectral broadening in the fifth harmonic of about a fac-
tor of 2 observed in experiments, as shown in Fig. 5.
The spectral broadening is independent of the sign of n2,
however, recent measurements (e.g. Ref. 31) show that
it is negative.

To address the role of variations in the Fermi level
caused by unwanted charge traps in the substrate, we
calculated the spectrum for two different Fermi energies,
0 eV and 500 eV, illustrated in Figures 6a and b, respec-
tively. The resulting spectra, shown in Fig 6c, are not
significantly different, which indicates that charge-trap-
induced variations of the Fermi level do not significantly
affect the interpretation of our results.

Appendix B: Computational Details

For numerical simulations, we used a quantum me-
chanical two-band model in which polarization and band
populations are coupled through the differential equa-
tions,

π̇(K, t) = −π(K, t)

T2
− iΩ(K, t)w(K, t)e−iS(K,t)(B1)

ṅm(K, t) = ismΩ∗(K, t)π(K, t)eiS(K,t) + c.c., (B2)

where m ∈ {c, v} labels the conduction band or valence
band, respectively; Ω = d(k) ·F(t) is the Rabi frequency,
with d the transition dipole moment and F the electric
field strength; w ≡ nv − nc is the population difference
between the two bands; sm is −1 or +1 for the valence
and conduction band, respectively; S is the classical ac-
tion; and π determines the polarization, p, through

p(K, t) = d(k)π(K, t)eiS(K,t) + c.c. . (B3)

This model is described in detail by Vampa et al. in Refs.
27 and 28 of the main text.

We treat a two-dimensional reciprocal space in the vec-
tor potential frame. A single reciprocal space unit cell,
containing one K point and one K’ point, is divided into a
finite number of polygons of unequal areas. The vertices
of the polygons are defined using the equation

Kij = KK,K′ ∓ (κij sin(θj + Φ), κij cos(θj + Φ)) , (B4)

where

θj =
π

3

(
2j

Nθ
− 1

)
, (B5)

FIG. 6. Effect of Fermi level on high harmonic spectrum.
(a-b) Valence and conduction bands near a Dirac point, illus-
trating the filling of levels up to a Fermi level of 0 eV and
500 eV, respectively. (c) Calculated interband and intraband
spectra for the Fermi levels shown in (a) and (b).



6

FIG. 7. Example of a grid determined by Eqn. B4, for NK =
8 and Nθ = 6. Black lines show polygons which define the
elements of area, and blue points show their centroids, where
the differential equations are evaluated.

and

κij =
2πi2

3aN2
K

[
1 +

(sec θj − 1)i2

N2
K

]
. (B6)

The alternate signs in Eqn. B4 refer to the K
and K’ points, respectively, located at KK,K′ =

(2π/
√

3a,±2π/3a). The indeces are i ∈ {0, 1, ..., NK}
and j ∈ {0, 1, ..., Nθ}. The numbers NK and Nθ de-
termine the grid density. The angle Φ takes three val-
ues, Φ ∈ {0, 2π/3, 4π/3}. The resulting grid is shown in
Fig. 7, where polygons are shown in black. The differ-
ential equations, B1 and B2, are evaluated at the cen-
troid of each polygon, shown as blue points in Fig. S1.
For the simulations presented in the manuscript, we used
NK = 24 and Nθ = 27.

Because of its vanishing bandgap, graphene exhibits
a divergent transition dipole moment at the K and K’
points, as shown in Fig 1d. In order to address the com-
putational difficulties that this divergence poses, we arti-
ficially limit the transition dipole moment by opening a
fictitious gap of 10 meV, which creates an upper limit of
approximately 60 atomic units. Since this gap is smaller
than the important energy scales, it does not have a sig-
nificant effect on our results. We establish this by check-
ing for convergence of our simulation with respect to a
shrinking gap. A smaller gap can be used, at the cost of
longer computation time. We also check for convergence
with respect to grid dimensions and density of time steps.
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