3,952 research outputs found

    Repeatable method of thermal stress fracture test of brittle materials

    Get PDF
    Method heats specimens slowly and with sufficient control so that the critical temperature gradient in the specimens cannot occur before temperature equilibrium is reached

    Surface drilling technologies for Mars

    Get PDF
    Rock drilling and coring conceptual designs for the surface activities associated with a manned Mars mission are proposed. Straightforward extensions of equipment and procedures used on Earth are envisioned for the sample coring and shallow high explosive shot holes needed for tunneling and seismic surveying. A novel rocket exhaust jet piercing method is proposed for very rapid drilling of shot holes required for explosive excavation of emergency radiation shelters. Summaries of estimated equipment masses and power requirements are provided, and the indicated rotary coring rigs are scaled from terrestrial equipment and use compressed CO2 from the Martian atmosphere for core bit cooling and cuttings removal. A mass of 120 kg and power of 3 kW(e) are estimated for a 10 m depth capability. A 100 m depth capacity core rig requires about 1150 kg and 32 km(e). The rocket exhaust jet equipment devised for shallow (3m) explosive emplacement shot holes requires no surface power beyond an electrical ignition system, and might have a 15 kg mass

    Calcium-mediated stabilisation of soil organic carbon

    Get PDF
    Soils play an essential role in the global cycling of carbon and understanding the stabilisation mechanisms behind the preservation of soil organic carbon (SOC) pools is of globally recognised significance. Until recently, research into SOC stabilisation has predominantly focused on acidic soil environments and the interactions between SOC and aluminium (Al) or iron (Fe). The interactions between SOC and calcium (Ca) have typically received less attention, with fewer studies conducted in alkaline soils. Although it has widely been established that exchangeable Ca (CaExch) positively correlates with SOC concentration and its resistance to oxidation, the exact mechanisms behind this relationship remain largely unidentified. This synthesis paper critically assesses available evidence on the potential role of Ca in the stabilisation of SOC and identifies research topics that warrant further investigation. Contrary to the common view of the chemistry of base cations in soils, chemical modelling indicates that Ca2+ can readily exchange its hydration shell and create inner sphere complexes with organic functional groups. This review therefore argues that both inner- and outer-sphere bridging by Ca2+ can play an active role in the stabilisation of SOC. Calcium carbonate (CaCO3) can influence occluded SOC stability through its role in the stabilisation of aggregates; however, it could also play an unaccounted role in the direct sorption and inclusion of SOC. Finally, this review highlights the importance of pH as a potential predictor of SOC stabilisation mechanisms mediated by Al- or Fe- to Ca, and their respective effects on SOC dynamics

    Evidence linking calcium to increased organo-mineral association in soils

    Full text link
    Geochemical indicators are emerging as important predictors of soil organic carbon (SOC) dynamics, but evidence concerning the role of calcium (Ca) is scarce. This study investigates the role of Ca prevalence in SOC accumulation by comparing otherwise similar sites with (CaCO3_{3}-bearing) or without carbonates (CaCO3_{3}-free). We measured the SOC content and indicators of organic matter quality (C stable isotope composition, expressed as δ13^{13}C values, and thermal stability) in bulk soil samples. We then used sequential sonication and density fractionation (DF) to separate two occluded pools from free and mineral-associated SOC. The SOC content, mass, and δ13^{13}C values were determined in all the fractions. X-ray photoelectron spectroscopy was used to investigate the surface chemistry of selected fractions. Our hypothesis was that occlusion would be more prevalent at the CaCO3_{3}-bearing site due to the influence of Ca on aggregation, inhibiting oxidative transformation, and preserving lower δ13^{13}C values. Bulk SOC content was twice as high in the CaCO3_{3}-bearing profiles, which also had lower bulk δ13^{13}C values, and more occluded SOC. Yet, contrary to our hypothesis, occlusion only accounted for a small proportion of total SOC (< 10%). Instead, it was the heavy fraction (HF), containing mineral-associated organic C, which accounted for the majority of total SOC and for the lower bulk δ13^{13}C values. Overall, an increased Ca prevalence was associated with a near-doubling of mineral-associated SOC content. Future investigations should now aim to isolate Ca-mediated complexation processes that increase organo-mineral association and preserve organic matter with lower δ13^{13}C values

    Secondary Metabolites Produced by the Marine Bacterium Halobacillus salinus That Inhibit Quorum Sensing-Controlled Phenotypes in Gram-Negative Bacteria

    Get PDF
    Certain bacteria use cell-to-cell chemical communication to coordinate community-wide phenotypic expression, including swarming motility, antibiotic biosynthesis, and biofilm production. Here we present a marine gram-positive bacterium that secretes secondary metabolites capable of quenching quorum sensing-controlled behaviors in several gram-negative reporter strains. Isolate C42, a Halobacillus salinus strain obtained from a sea grass sample, inhibits bioluminescence production by Vibrio harveyi in cocultivation experiments. With the use of bioassay-guided fractionation, two phenethylamide metabolites were identified as the active agents. The compounds additionally inhibit quorum sensing-regulated violacein biosynthesis by Chromobacterium violaceum CV026 and green fluorescent protein production by Escherichia coli JB525. Bacterial growth was unaffected at concentrations below 200 μg/ml. Evidence is presented that these nontoxic metabolites may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding

    Physiological and morphological responses of 'Irukandji' polyps to thermal and osmotic conditions: consequences for niche profiling

    Get PDF
    The Irukandji jellyfish (Carukia barnesi) is a medically important species. While the medusa stage of this species is well known, due to its highly venomous sting, the benthic polyp has core roles in regulating both the timing and abundance of medusa making it a research priority. However, due to their small size, Carukia barnesi polyps have never been found in situ and, basic ecological knowledge surrounding this life stage is limited. In this study we adopt a lab-based approach, utilizing physiological tolerance as a functional tool, to gain new insights into the in situ location for Carukia barnesi polyps. The physiological tolerance of Carukia barnesi polyps was characterized by measuring the oxygen consumption rates of polyps exposed to different salinity/temperature combinations. A total of nine salinities and seven temperatures were investigated, ranging from 11 °C/16‰ to 34 °C/42.5‰, encompassing the spectrum of environments experienced on the Great Barrier Reef. Polyps were also monitored for morphological changes such as asexual reproduction, polyp deterioration, and mortality. Salinity did not have a significant effect on oxygen consumption rates, with Carukia barnesi polyps displaying a significant tolerance to a wide range of salinities. The effect of temperature, however, was statistically significant with oxygen °consumption rates increasing alongside water temperature. There was no statistical evidence to support an interactive effect between salinity and temperature. Based on these results, we conclude that the polyp stage of this species is likely located in an environment with stable temperatures and fluctuating salinities and, consequently, future endeavors aimed at locating this life stage should expand targeted survey areas outside stable oceanic environments, typical of medusa, and encompass dynamic environments such as estuaries and submarine freshwater upwellings

    Bay watch: using unmanned aerial vehicles (UAV’s) to survey the box jellyfish Chironex fleckeri

    Get PDF
    Biological investigations on free ranging marine species are regarded as challenging throughout the scientific community. This is particularly true for ‘logistically difficult species’ where their cryptic natures, low abundance, patchy distributions and difficult and/or dangerous sampling environments, make traditional surveys near impossible. What results is a lack of ecological knowledge on such marine species. However, advances in UAV technology holds potential for overcoming these logistical difficulties and filling this knowledge gap. Our research focused on one such logistically difficult species, the Australian box Jellyfish (Chironex fleckeri), and we investigated the capacity of consumer grade UAV technology to detect this, highly venomous, target species in the inshore waters of Northern Queensland Australia. At two sites in the Weipa area, we utilized video analysis, visual count comparisons with a netted animal tally, and evaluated the role of associated environmental conditions, such as wind speed, water visibility and cloud cover on jellyfish detection rates. In total fifteen, 70 meter transects were completed between two sites, with 107 individuals captured. Drone success varied between the two sites with a significant difference between field and post-field (laboratory) counts. Animal size and cloud cover also had significant effects on detection rates with an increase in cloud cover and animal size enhancing detection probability. This study provides evidence to suggest drone surveys overcome obstacles that traditional surveys can’t, with respect to species deemed logistically difficult and open scope for further ecological investigations on such species

    Draft Genome Sequence of Pseudoalteromonas sp. Strain JC3

    Get PDF
    We report the draft genome sequence for Pseudoalteromonas sp. strain JC3, an isolate obtained from an aquaculture facility for whiteleg shrimp (Litopenaeus vannamei). The JC3 genome suggests multiple mechanisms for microbial interactions, including a type VI secretion system and potential for antibiotic production

    RNA-Containing Cytoplasmic Inclusion Bodies in Ciliated Bronchial Epithelium Months to Years after Acute Kawasaki Disease

    Get PDF
    Kawasaki Disease (KD) is the most common cause of acquired heart disease in children in developed nations. The KD etiologic agent is unknown but likely to be a ubiquitous microbe that usually causes asymptomatic childhood infection, resulting in KD only in genetically susceptible individuals. KD synthetic antibodies made from prevalent IgA gene sequences in KD arterial tissue detect intracytoplasmic inclusion bodies (ICI) resembling viral ICI in acute KD but not control infant ciliated bronchial epithelium. The prevalence of ICI in late-stage KD fatalities and in older individuals with non-KD illness should be low, unless persistent infection is common.Lung tissue from late-stage KD fatalities and non-infant controls was examined by light microscopy for the presence of ICI. Nucleic acid stains and transmission electron microscopy (TEM) were performed on tissues that were strongly positive for ICI. ICI were present in ciliated bronchial epithelium in 6/7 (86%) late-stage KD fatalities and 7/27 (26%) controls ages 9-84 years (p = 0.01). Nucleic acid stains revealed RNA but not DNA within the ICI. ICI were also identified in lung macrophages in some KD cases. TEM of bronchial epithelium and macrophages from KD cases revealed finely granular homogeneous ICI.These findings are consistent with a previously unidentified, ubiquitous RNA virus that forms ICI and can result in persistent infection in bronchial epithelium and macrophages as the etiologic agent of KD
    corecore