37 research outputs found

    Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots

    Get PDF
    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified

    Understanding Flavin-Dependent Halogenase Reactivity via Substrate Activity Profiling

    No full text
    The activity of four native FDHs and four engineered FDH variants on 93 low-molecular-weight arenes was used to generate FDH substrate activity profiles. These profiles provided insights into how substrate class, functional group substitution, electronic activation, and binding affect FDH activity and selectivity. The enzymes studied could halogenate a far greater range of substrates than have been previously recognized, but significant differences in their substrate specificity and selectivity were observed. Trends between the electronic activation of each site on a substrate and halogenation conversion at that site were established, and these data, combined with docking simulations, suggest that substrate binding can override electronic activation even on compounds differing appreciably from native substrates. These findings provide a useful framework for understanding and exploiting FDH reactivity for organic synthesis

    Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots

    No full text
    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified

    RNA Tertiary Structure Analysis by 2′-Hydroxyl Molecular Interference

    No full text
    We introduce a melded chemical and computational approach for probing and modeling higher-order intramolecular tertiary interactions in RNA. 2'-Hydroxyl molecular interference (HMX) identifies nucleotides in highly packed regions of an RNA by exploiting the ability of bulky adducts at the 2'-hydroxyl position to disrupt overall RNA structure. HMX was found to be exceptionally selective for quantitative detection of higher-order and tertiary interactions. When incorporated as experimental constraints in discrete molecular dynamics (DMD) simulations, HMX information yielded accurate three-dimensional models, emphasizing the power of molecular interference to guide RNA tertiary structure analysis and fold refinement. In the case of a large, multi-domain RNA, the Tetrahymena group I intron, HMX identified multiple distinct sets of tertiary structure interaction groups in a single, concise experiment

    Structure and Dynamics of the HIV‑1 Frameshift Element RNA

    Get PDF
    The HIV-1 ribosomal frameshift element is highly structured, regulates translation of all virally encoded enzymes, and is a promising therapeutic target. The prior model for this motif contains two helices separated by a three-nucleotide bulge. Modifications to this model were suggested by SHAPE chemical probing of an entire HIV-1 RNA genome. Novel features of the SHAPE-directed model include alternate helical conformations and a larger, more complex structure. These structural elements also support the presence of a secondary frameshift site within the frameshift domain. Here, we use oligonucleotide-directed structure perturbation, probing in the presence of formamide, and in-virion experiments to examine these models. Our data support a model in which the frameshift domain is anchored by a stable helix outside the conventional domain. Less stable helices within the domain can switch from the SHAPE-predicted to the two-helix conformation. Translational frameshifting assays with frameshift domain mutants support a functional role for the interactions predicted by and specific to the SHAPE-directed model. These results reveal that the HIV-1 frameshift domain is a complex, dynamic structure and underscore the importance of analyzing folding in the context of full-length RNAs

    Long-Range Architecture in a Viral RNA Genome

    No full text
    We have developed a model for the secondary structure of the 1058-nucleotide plus-strand RNA genome of the icosahedral satellite tobacco mosaic virus (STMV) using nucleotide-resolution SHAPE chemical probing of the viral RNA isolated from virions and within the virion, perturbation of interactions distant in the primary sequence, and atomic force microscopy. These data are consistent with long-range base pairing interactions and a three-domain genome architecture. The compact domains of the STMV RNA have dimensions of 10 to 45 nm. Each of the three domains corresponds to a specific functional component of the virus: The central domain corresponds to the coding sequence of the single (capsid) protein encoded by the virus, whereas the 5′ and 3′ untranslated domains span signals essential for translation and replication, respectively. This three-domain architecture is compatible with interactions between the capsid protein and short RNA helices previously visualized by crystallography. STMV is among the simplest of the icosahedral viruses but, nonetheless, has an RNA genome with a complex higher-order structure that likely reflects high information content and an evolutionary relationship between RNA domain structure and essential replicative functions
    corecore