40 research outputs found

    Radiosensitivity in breast cancer assessed by the Comet and micronucleus assays

    Get PDF
    Spontaneous and radiation-induced genetic instability of peripheral blood mononuclear cells derived from unselected breast cancer (BC) patients (n=50) was examined using the single-cell gel electrophoresis (Comet) assay and a modified G2 micronucleus (MN) test. Cells from apparently healthy donors (n=16) and from cancer patients (n=9) with an adverse early skin reaction to radiotherapy (RT) served as references. Nonirradiated cells from the three tested groups exhibited similar baseline levels of DNA fragmentation assessed by the Comet assay. Likewise, the Comet analysis of in vitro irradiated (5 Gy) cells did not reveal any significant differences among the three groups with respect to the initial and residual DNA fragmentation, as well as the DNA repair kinetics. The G2 MN test showed that cells from cancer patients with an adverse skin reaction to RT displayed increased frequencies of both spontaneous and radiation-induced MN compared to healthy control or the group of unselected BC patients. Two patients from the latter group developed an increased early skin reaction to RT, which was associated with an increased initial DNA fragmentation in vitro only in one of them. Cells from the other BC patient exhibited a striking slope in the dose–response curve detected by the G2 MN test. We also found that previous RT strongly increased both spontaneous and in vitro radiation-induced MN levels, and to a lesser extent, the radiation-induced DNA damage assessed by the Comet assay. These data suggest that clinical radiation may provoke genetic instability and/or induce persistent DNA damage in normal cells of cancer patients, thus leading to increased levels of MN induction and DNA fragmentation after irradiation in vitro. Therefore, care has to be taken when blood samples collected postradiotherapeutically are used to assess the radiosensitivity of cancer patients

    DNA repair capacity as a possible biomarker of breast cancer risk in female BRCA1 mutation carriers

    Get PDF
    The BRCA1 gene product helps to maintain genomic integrity through its participation in the cellular response to DNA damage: specifically, the repair of double-stranded DNA breaks. An impaired cellular response to DNA damage is a plausible mechanism whereby BRCA1 mutation carriers are at increased risk of breast cancer. Hence, an individual's capacity to repair DNA may serve as a useful biomarker of breast cancer risk. The overall aim of the current study was to identify a biomarker of DNA repair capacity that could distinguish between BRCA1 mutation carriers and non-carriers. DNA repair capacity was assessed using three validated assays: the single-cell alkaline gel electrophoresis (comet) assay, the micronucleus test, and the enumeration of γ-H2AX nuclear foci. DNA repair capacity of peripheral blood lymphocytes from 25 cancer-free female heterozygous BRCA1 mutation carriers and 25 non-carrier controls was assessed at baseline and following cell exposure to γ – irradiation (2 Gy). We found no significant differences in the mean tail moment, in the number of micronuclei or in the number of γ-H2AX nuclear foci between the carriers and non-carriers at baseline, and following γ-irradiation. These data suggest that these assays are not likely to be useful in the identification of women at a high risk for breast cancer

    A Bioinformatics Filtering Strategy for Identifying Radiation Response Biomarker Candidates

    Get PDF
    The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10) of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation response

    Addition of NMDA-receptor antagonist MK801 during oxygen/glucose deprivation moderately attenuates the up-regulation of glucose uptake after subsequent reoxygenation in brain endothelial cells

    Get PDF
    During stroke the blood–brain barrier (BBB) is damaged which can result in vasogenic brain edema and inflammation. The reduced blood supply leads to decreased delivery of oxygen and glucose to affected areas of the brain. Oxygen and glucose deprivation (OGD) can cause upregulation of glucose uptake of brain endothelial cells. In this letter, we investigated the influence of MK801, a non-competitive inhibitor of the NMDA-receptor, on the regulation of the glucose uptake and of the main glucose transporters glut1 and sglt1 in murine BBB cell line cerebEND during OGD. mRNA expression of glut1 was upregulated 68.7- fold after 6 h OGD, which was significantly reduced by 10 μM MK801 to 28.9-fold. Sglt1 mRNA expression decreased during OGD which was further reduced by MK801. Glucose uptake was significantly increased up to 907% after 6 h OGD and was still higher (210%) after the 20 h reoxygenation phase compared to normoxia. Ten micromolar MK801 during OGD was able to reduce upregulated glucose uptake after OGD and reoxygenation significantly. Presence of several NMDAR subunits was proven on the mRNA level in cerebEND cells. Furthermore, it was shown that NMDAR subunit NR1 was upregulated during OGD and that this was inhibitable by MK801. In conclusion, the addition of MK801 during the OGD phase reduced significantly the glucose uptake after the subsequent reoxygenation phase in brain endothelial cells

    Migration pattern, actin cytoskeleton organization and response to PI3K-, mTOR-, and Hsp90-inhibition of glioblastoma cells with different invasive capacities

    No full text
    High invasiveness and resistance to chemo- and radiotherapy of glioblastoma multiforme (GBM) make it the most lethal brain tumor. Therefore, new treatment strategies for preventing migration and invasion of GBM cells are needed. Using two different migration assays, Western blotting, conventional and super-resolution (dSTORM) fluorescence microscopy we examine the effects of the dual PI3K/mTOR-inhibitor PI-103 alone and in combination with the Hsp90 inhibitor NVP-AUY922 and/or irradiation on the migration, expression of marker proteins, focal adhesions and F-actin cytoskeleton in two GBM cell lines (DK-MG and SNB19) markedly differing in their invasive capacity. Both lines were found to be strikingly different in morphology and migration behavior. The less invasive DK-MG cells maintained a polarized morphology and migrated in a directionally persistent manner, whereas the highly invasive SNB19 cells showed a multipolar morphology and migrated randomly. Interestingly, a single dose of 2 Gy accelerated wound closure in both cell lines without affecting their migration measured by single-cell tracking. PI-103 inhibited migration of DK-MG (p53 wt, PTEN wt) but not of SNB19 (p53 mut, PTEN mut) cells probably due to aberrant reactivation of the PI3K pathway in SNB19 cells treated with PI-103. In contrast, NVP-AUY922 exerted strong anti-migratory effects in both cell lines. Inhibition of cell migration was associated with massive morphological changes and reorganization of the actin cytoskeleton. Our results showed a cell line-specific response to PI3K/mTOR inhibition in terms of GBM cell motility. We conclude that anti-migratory agents warrant further preclinical investigation as potential therapeutics for treatment of GBM
    corecore