117 research outputs found

    Spin-spin correlations between two Kondo impurities coupled to an open Hubbard chain

    Get PDF
    In order to study the interplay between Kondo and Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, we calculate the spin-spin correlation functions between two Kondo impurities coupled to different sites of a half-filled open Hubbard chain. Using the density-matrix renormalization group (DMRG), we re-examine the exponents for the power-law decay of the correlation function between the two impurity spins as a function of the antiferromagnetic coupling J, the Hubbard interaction U, and the distance R between the impurities. The exponents for finite systems obtained in this work deviate from previously published DMRG calculations. We furthermore show that the long-distance behavior of the exponents is the same for impurities coupled to the bulk or to both ends of the chain. We note that a universal exponent for the asymptotic behavior cannot be extracted from these finite-size systems with open boundary conditions.Comment: 8 pages, 10 figures; v2: final version, references and Fig. 8 adde

    Long-range Kondo signature of a single magnetic impurity

    Full text link
    The Kondo effect, one of the oldest correlation phenomena known in condensed matter physics, has regained attention due to scanning tunneling spectroscopy (STS) experiments performed on single magnetic impurities. Despite the sub-nanometer resolution capability of local probe techniques one of the fundamental aspects of Kondo physics, its spatial extension, is still subject to discussion. Up to now all STS studies on single adsorbed atoms have shown that observable Kondo features rapidly vanish with increasing distance from the impurity. Here we report on a hitherto unobserved long range Kondo signature for single magnetic atoms of Fe and Co buried under a Cu(100) surface. We present a theoretical interpretation of the measured signatures using a combined approach of band structure and many-body numerical renormalization group (NRG) calculations. These are in excellent agreement with the rich spatially and spectroscopically resolved experimental data.Comment: 7 pages, 3 figures + 8 pages supplementary material; Nature Physics (Jan 2011 - advanced online publication

    Viscoelastic adaptation of tendon graft material to compression: biomechanical quantification of graft preconditioning

    Full text link
    PURPOSE: The tensile viscoelastic behaviour of tendon tissue is of central biomechanical importance and well examined. However, the viscoelastic tendon adaptation to external compression, such as when a tendon graft is fixated with an interference screw, has not been investigated before. Here, we quantify this adaptive behaviour in order to develop a new method to mechanically precondition tendon grafts and to better understand volumetric changes of tendinous tissue. The hypothesis of this study was that under compressive loads, tendon grafts will undergo a temporary volumetric (and therefore diametric) reduction, due to the extrusion of water from the tendon. METHODS: Compressive testing was performed on a material testing machine and load applied through the use of a custom-made mould, with a semi-circular cross section to accommodate the tendon graft. The effects of different compressive forces on the length, diameter and weight of tendon grafts were measured by calipers and a weighing scale, respectively. Further, different strain rates (1 vs. 10 mm/min) (n = 6, per rate), compression method (steady compression vs. creep) (n = 15 for each method) and different compression durations (1, 5, 10 min) (n = 5 for each duration) were tested to identify the most effective combination to reduce graft size by preserving its macroscopic structure. RESULTS: The effect of compression on volume reduction (75 % of initial volume and weight) reached a plateau at 6,000 N on an 8-mm tendon bundle. Length thereby increased by approximately 10 %. Both steady compression and creeping were able to reduce dimensions of the graft; however, creeping was more effective. There was no difference in effect with different durations for compression (p > 0.05) in both methods. CONCLUSION: The viscoelastic behaviour of hamstring tendon grafts under pressure allows preconditioning of the grafts for reduction of volume and diameter and therefore to drill a smaller bone tunnel, retaining more of the original bone. At the same time, the collagen content of the transplant is preserved and a tight fit of the transplant in the bone tunnel achieved

    Perinatal and 2-year neurodevelopmental outcome in late preterm fetal compromise: the TRUFFLE 2 randomised trial protocol

    Get PDF
    Introduction: Following the detection of fetal growth restriction, there is no consensus about the criteria that should trigger delivery in the late preterm period. The consequences of inappropriate early or late delivery are potentially important yet practice varies widely around the world, with abnormal findings from fetal heart rate monitoring invariably leading to delivery. Indices derived from fetal cerebral Doppler examination may guide such decisions although there are few studies in this area. We propose a randomised, controlled trial to establish the optimum method of timing delivery between 32 weeks and 36 weeks 6 days of gestation. We hypothesise that delivery on evidence of cerebral blood flow redistribution reduces a composite of perinatal poor outcome, death and short-term hypoxia-related morbidity, with no worsening of neurodevelopmental outcome at 2 years. Methods and analysis: Women with non-anomalous singleton pregnancies 32+0 to 36+6 weeks of gestation in whom the estimated fetal weight or abdominal circumference is <10th percentile or has decreased by 50 percentiles since 18-32 weeks will be included for observational data collection. Participants will be randomised if cerebral blood flow redistribution is identified, based on umbilical to middle cerebral artery pulsatility index ratio values. Computerised cardiotocography (cCTG) must show normal fetal heart rate short term variation (≥4.5 msec) and absence of decelerations at randomisation. Randomisation will be 1:1 to immediate delivery or delayed delivery (based on cCTG abnormalities or other worsening fetal condition). The primary outcome is poor condition at birth and/or fetal or neonatal death and/or major neonatal morbidity, the secondary non-inferiority outcome is 2-year infant general health and neurodevelopmental outcome based on the Parent Report of Children's Abilities-Revised questionnaire. Ethics and dissemination: The Study Coordination Centre has obtained approval from London-Riverside Research Ethics Committee (REC) and Health Regulatory Authority (HRA). Publication will be in line with NIHR Open Access policy. Trial registration number: Main sponsor: Imperial College London, Reference: 19QC5491. Funders: NIHR HTA, Reference: 127 976. Study coordination centre: Imperial College Healthcare NHS Trust, Du Cane Road, London, W12 0HS with Centre for Trials Research, College of Biomedical & Life Sciences, Cardiff University. IRAS Project ID: 266 400. REC reference: 20/LO/0031. ISRCTN registry: 76 016 200

    T cell re-direction against glypican-3 for immunotherapy of hepatocellular carcinom.

    No full text
    Hepatocellular carcinoma (HCC) represents the third most common cause of cancer related death worldwide. A new therapeutic approach is the adoptive T-cell therapy. Glypican-3 (GPC3) as a tumour associated antigen is expressed in 75% of all HCC but not in healthy liver or other organs. In the present study we have identified and cloned the GPC3-specific T-cell receptor P1-1. The functionality of the isolated TCR P1-1 towards human hepatoma cells was demonstrated in vitro and in vivo. GPC3-directed T-cell therapy shows great promise for the treatment of HCC
    • …
    corecore