8 research outputs found
Effective Hamiltonian Theory and Its Applications in Quantum Information
This paper presents a useful compact formula for deriving an effective
Hamiltonian describing the time-averaged dynamics of detuned quantum systems.
The formalism also works for ensemble-averaged dynamics of stochastic systems.
To illustrate the technique we give examples involving Raman processes,
Bloch-Siegert shifts and Quantum Logic Gates.Comment: 5 pages, 3 figures, to be published in Canadian Journal of Physic
Robust control of decoherence in realistic one-qubit quantum gates
We present an open loop (bang-bang) scheme to control decoherence in a
generic one-qubit quantum gate and implement it in a realistic simulation. The
system is consistently described within the spin-boson model, with interactions
accounting for both adiabatic and thermal decoherence. The external control is
included from the beginning in the Hamiltonian as an independent interaction
term. After tracing out the environment modes, reduced equations are obtained
for the two-level system in which the effects of both decoherence and external
control appear explicitly. The controls are determined exactly from the
condition to eliminate decoherence, i.e. to restore unitarity. Numerical
simulations show excellent performance and robustness of the proposed control
scheme.Comment: 21 pages, 8 figures, VIth International Conference on Quantum
Communication, Measurement and Computing (Boston, 2002
New summing algorithm using ensemble computing
We propose an ensemble algorithm, which provides a new approach for
evaluating and summing up a set of function samples. The proposed algorithm is
not a quantum algorithm, insofar it does not involve quantum entanglement. The
query complexity of the algorithm depends only on the scaling of the
measurement sensitivity with the number of distinct spin sub-ensembles. From a
practical point of view, the proposed algorithm may result in an exponential
speedup, compared to known quantum and classical summing algorithms. However in
general, this advantage exists only if the total number of function samples is
below a threshold value which depends on the measurement sensitivity.Comment: 13 pages, 0 figures, VIth International Conference on Quantum
Communication, Measurement and Computing (Boston, 2002
Targeting qubit states using open-loop control
We present an open-loop (bang-bang) scheme which drives an open two-level
quantum system to any target state, while maintaining quantum coherence
throughout the process. The control is illustrated by a realistic simulation
for both adiabatic and thermal decoherence. In the thermal decoherence regime,
the control achieved by the proposed scheme is qualitatively similar, at the
ensemble level, to the control realized by the quantum feedback scheme of Wang,
Wiseman, and Milburn [Phys. Rev. A 64, #063810 (2001)] for the spontaneous
emission of a two-level atom. The performance of the open-loop scheme compares
favorably against the quantum feedback scheme with respect to robustness,
target fidelity and transition times.Comment: 27 pages, 7 figure
Constant-time solution to the Global Optimization Problem using Bruschweiler's ensemble search algorithm
A constant-time solution of the continuous Global Optimization Problem (GOP)
is obtained by using an ensemble algorithm. We show that under certain
assumptions, the solution can be guaranteed by mapping the GOP onto a discrete
unsorted search problem, whereupon Bruschweiler's ensemble search algorithm is
applied. For adequate sensitivities of the measurement technique, the query
complexity of the ensemble search algorithm depends linearly on the size of the
function's domain. Advantages and limitations of an eventual NMR implementation
are discussed.Comment: 14 pages, 0 figure
The effects of thymoquinone on pancreatic cancer: Evidence from preclinical studies
Thymoquinone (TQ) is a secondary metabolite found in abundance in very few plant species including Nigella sativa L., Monarda fistulosa L., Thymus vulgaris L. and Satureja montana L. Preclinical pharmacological studies have shown that TQ has many biological activities, such as anti-inflammatory, antioxidant and anticancer. Both in vivo and in vitro experiments have shown that TQ acts as an antitumor agent by altering cell cycle progression, inhibiting cell proliferation, stimulating apoptosis, inhibiting angiogenesis, reducing metastasis and affecting autophagy. In this comprehensive study, the evidence on the pharmacological potential of TQ on pancreatic cancer is reviewed. The positive results of preclinical studies support the view that TQ can be considered as an additional therapeutic agent against pancreatic cancer. The possibilities of success for this compound in human medicine should be further explored through clinical trials. © 2022 The Author
Quantum risk-sensitive control
The purpose of this paper is to describe some recent results concerning optimal feedback control of quantum systems using risk-sensitive performance criteria. We employ quantum stochastic models to describe an important class of quantum systems and define a risk-sensitive criterion for these models. A suitable information state is introduced to solve the optimal control problem using dynamic programming. The results are illustrated by examples
