76 research outputs found
Bovine Aorta Endothelial Cell Incubation with Interleukin 2: Morphological Changes Correlate with Enhanced Vascular Permeability
Interleukin 2 induced alterations in the morphology of bovine aortic endothelial cells in vitro. The changes observed in confluent cultures of bovine aortic endothelial cells included retraction and elongation of eel ls leading to enlarged gaps between cells quantified by image analysis. Purified IL-2 (1 U/ml medium) increased the gaps between endothelial cells 3-4-fold compared with control cultures. The effect was transient, since the cells reverted to their original morphology 6-12 hours after the removal of lL-2. Correlative scanning electron microscopy (SEM) studies using fresh bovine aorta showed a dose-dependent alteration of the endothelial surface by IL-2 characterized by rounding and elongation of endothelial cells and prominent perinuclear areas. Gaps between the endothelial cells were observed when aorta samples were incubated with 2 U of IL-2/ml of medium. This was confirmed by SEM, transmission electron microscopy and Evans blue dye staining. These results suggest that IL-2 caused morphological alterations in endothelial cells that enhanced the permeability of the vascular endothelium
Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas.
EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells
Catechins are key components of teas that have antiproliferative properties. We investigated the effects of green tea catechins on intracellular signalling and VEGF induction in vitro in serum-deprived HT29 human colon cancer cells and in vivo on the growth of HT29 cells in nude mice. In the in vitro studies, (-)-epigallocatechin gallate (EGCG), the most abundant catechin in green tea extract, inhibited Erk-1 and Erk-2 activation in a dose-dependent manner. However, other tea catechins such as (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), and (-)-epicatechin (EC) did not affect Erk-1 or 2 activation at a concentration of 30 μM. EGCG also inhibited the increase of VEGF expression and promoter activity induced by serum starvation. In the in vivo studies, athymic BALB/c nude mice were inoculated subcutaneously with HT29 cells and treated with daily intraperitoneal injections of EC (negative control) or EGCG at 1.5 mg day−1mouse−1starting 2 days after tumour cell inoculation. Treatment with EGCG inhibited tumour growth (58%), microvessel density (30%), and tumour cell proliferation (27%) and increased tumour cell apoptosis (1.9-fold) and endothelial cell apoptosis (3-fold) relative to the control condition (P< 0.05 for all comparisons). EGCG may exert at least part of its anticancer effect by inhibiting angiogenesis through blocking the induction of VEGF. © 2001 Cancer Research Campaign http://www.bjcancer.co
Inhibited growth of colon cancer carcinomatosis by antibodies to vascular endothelial and epidermal growth factor receptors
Vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) regulate colon cancer growth and metastasis. Previous studies utilizing antibodies against the VEGF receptor (DC101) or EGF receptor (C225) have demonstrated independently that these agents can inhibit tumour growth and induce apoptosis in colon cancer in in vivo and in vitro systems. We hypothesized that simultaneous blockade of the VEGF and EGF receptors would enhance the therapy of colon cancer in a mouse model of peritoneal carcinomatosis. Nude mice were given intraperitoneal injection of KM12L4 human colon cancer cells to generate peritoneal metastases. Mice were then randomized into one of four treatment groups: control, anti-VEGFR (DC101), anti-EGFR (C225), or DC101 and C225. Relative to the control group, treatment with DC101 or with DC101+C225 decreased tumour vascularity, growth, proliferation, formation of ascites and increased apoptosis of both tumour cells and endothelial cells. Although C225 therapy did not change any of the above parameters, C225 combined with DC101 led to a significant decrease in tumour vascularity and increases in tumour cell and endothelial cell apoptosis (vs the DC101 group). These findings suggest that DC101 inhibits angiogenesis, endothelial cell survival, and VEGF-mediated ascites formation in a murine model of colon cancer carcinomatosis. The addition of C225 to DC101 appears to lead to a further decrease in angiogenesis and ascites formation. Combination anti-VEGF and anti-EGFR therapy may represent a novel therapeutic strategy for the management of colon peritoneal carcinomatosis. © 2001 Cancer Research Campaign http://www.bjcancer.co
Dynamic change in phosphorylated platelet-derived growth factor receptor in peripheral blood leukocytes following docetaxel therapy predicts progression-free and overall survival in prostate cancer
In a placebo-controlled randomised study of the platelet-derived growth factor receptor (PDGFR) inhibitor imatinib mesylate and docetaxel in metastatic prostate cancer with bone metastases (n=116), no significant differences in progression-free and overall survival were observed. To evaluate pharmacodynamic correlates of outcomes, we assessed the association of plasma platelet-derived growth factor (PDGF) isoform kinetics and PDGFR inhibition with progression-free and overall survival by individual treatment arm. We found that in the docetaxel–placebo arm alone, the probability of decrease in PDGFR phosphorylation (Pr-Decr-pPDGFR) above 0.5 (vs ⩽0.5) was associated with a sharp increase in all measured plasma PDGF isoforms (P=0.006 for AA, 0.002 for BB, 0.045 for AB); a decreased median progression-free survival of 3.3 months vs 6.8 months (hazard ratio (HR) 2.5; P=0.006 in log-rank test) and an inferior median overall survival of 20 months vs >30 months (HR 3.1; P=0.04 in log-rank test). By contrast, in the docetaxel plus imatinib arm, the association of Pr-Decr-pPDGFR >0.5 with a rise in plasma PDGF isoform concentrations and inferior survival was not observed. The data suggest that dynamic changes in PDGFR phosphorylation in peripheral blood leukocytes predict docetaxel efficacy. Rising plasma PDGF concentrations may explain and/or mark docetaxel resistance. Validation and mechanistic studies addressing these unexpected findings should anticipate a confounding influence of concurrent PDGFR inhibitor therapy
Localization of DNA damage and its role in altered antigen-presenting cell function in ultraviolet-irradiated mice.
Angiopoietin-1 inhibits tumour growth and ascites formation in a murine model of peritoneal carcinomatosis
Angiopoietin-1 is an important regulator of endothelial cell survival. Angiopoietin-1 also reduces vascular permeability mediated by vascular endothelial growth factor. The effects of angiopoietin-1 on tumour growth and angiogenesis are controversial. We hypothesised that angiopoietin-1 would decrease tumour growth and ascites formation in peritoneal carcinomatosis. Human colon cancer cells (KM12L4) were transfected with vector (pcDNA) alone (control) or vector containing angiopoietin-1 and injected into the peritoneal cavities of mice. After 30 days, the following parameters were measured: number of peritoneal nodules, ascites volume, and diameter of the largest tumour. Effects of angiopoietin-1 on vascular permeability were investigated using an intradermal Miles assay with conditioned media from transfected cells. Seven of the nine mice in the pcDNA group developed ascites (1.3±0.5 ml (mean±s.e.m.)), whereas no ascites was detectable in the angiopoietin-1 group (0 out of 10) (P<0.01). Number of peritoneal metastases (P<0.05), tumour volume, (P<0.05), vessel counts (P<0.01), and tumour cell proliferation (P<0.01) were significantly reduced in angiopoietin-1-expressing tumours. Conditioned medium from angiopoietin-1-transfected cells decreased vascular permeability more than did conditioned medium from control cells (P<0.05). Our results suggest that angiopoietin-1 is an important mediator of angiogenesis and vascular permeability and thus could theoretically serve as an anti-neoplastic agent for patients with carcinomatosis from colorectal cancer
ZD6126 inhibits orthotopic growth and peritoneal carcinomatosis in a mouse model of human gastric cancer
Molecular Mechanisms of Tumor Cell Survival, Growth, and Apoptosis During Organ-Specific Metastasis
Metastasis is a highly selective nonrandom process favoring the survival of minor subpopulations of metatastatic cells that preexist within the primary tumor. The cellular and molecular mechanisms that regulate the metastasis of tumor cells to specific organs are diverse and both tumor and organ-specific (1). Many examples exist in which malignant tumors metastasize to specific organs. As Paget proposed in 1889 (2), and as our recent biological and molecular evidence demonstrates, the organ microenvironment influences the invasion, survival, growth, and apoptosis of particular tumor cells. This hypothesis explains metastatic colonization patterns that cannot be due to solely mechanical lodgement/anatomical considerations (1). Successful metastasis therefore involves the interaction of tumor cells with a compatible milieu provided by a particular organ environment.Recent experimental evidence suggests that paracrine stimulation of tumor cells by organ-derived growth factors and cytokines is one mechanism which determines the target organ preference of disseminated cancer cells.</jats:p
Immunologic specificity and reactivity of goat anti-guinea pig and goat anti-mouse macrophage sera.
- …
