20 research outputs found

    Identification and Clonal Characterisation of a Progenitor Cell Sub-Population in Normal Human Articular Cartilage

    Get PDF
    Background: Articular cartilage displays a poor repair capacity. The aim of cell-based therapies for cartilage defects is to repair damaged joint surfaces with a functional replacement tissue. Currently, chondrocytes removed from a healthy region of the cartilage are used but they are unable to retain their phenotype in expanded culture. The resulting repair tissue is fibrocartilaginous rather than hyaline, potentially compromising long-term repair. Mesenchymal stem cells, particularly bone marrow stromal cells (BMSC), are of interest for cartilage repair due to their inherent replicative potential. However, chondrocyte differentiated BMSCs display an endochondral phenotype, that is, can terminally differentiate and form a calcified matrix, leading to failure in long-term defect repair. Here, we investigate the isolation and characterisation of a human cartilage progenitor population that is resident within permanent adult articular cartilage. Methods and Findings: Human articular cartilage samples were digested and clonal populations isolated using a differential adhesion assay to fibronectin. Clonal cell lines were expanded in growth media to high population doublings and karyotype analysis performed. We present data to show that this cell population demonstrates a restricted differential potential during chondrogenic induction in a 3D pellet culture system. Furthermore, evidence of high telomerase activity and maintenance of telomere length, characteristic of a mesenchymal stem cell population, were observed in this clonal cell population. Lastly, as proof of principle, we carried out a pilot repair study in a goat in vivo model demonstrating the ability of goat cartilage progenitors to form a cartilage-like repair tissue in a chondral defect. Conclusions: In conclusion, we propose that we have identified and characterised a novel cartilage progenitor population resident in human articular cartilage which will greatly benefit future cell-based cartilage repair therapies due to its ability to maintain chondrogenicity upon extensive expansion unlike full-depth chondrocytes that lose this ability at only seven population doublings

    Variability of naked DNA expression after direct local injection : the influence of the injection speed

    No full text
    The simple injection of DNA into muscles is known to result in the expression of the injected genes, even though at low and variable levels. We report that this variability in DNA expression is partly dependent on the injection speed. The acceleration of the injection speed from values around 2 mul/s up to ones around 25 mul/s (depending on the tissue) results in a significant increase in gene expression in skeletal muscle (280 times on an average) and in liver (50 times) and a nonsignificant sevenfold increase in tumors. Heparin, which inhibits the spontaneous uptake of the injected DNA, also inhibits the increases related to the injection speed. However, at the highest injection speed, this inhibition is not total because very fast injections provoke a direct permeabilization of the cells. This 'hydroporation' could be similar to the permeabilization found in the hydrodynamics method based on the fast intravascular injection of a huge volume of DNA. Neither the 'hydroporation' nor the heparin-inhibitable uptake mechanism induces histologically detectable lesions. There is a limited muscle cell stress independent of the injection speed. Heterogeneity in the injection speed might thus be an explanation for the variability in DNA expression after simple injection.Gene Therapy advance online publication, 27 July 2006; doi:10.1038/sj.gt.3302827

    Variability of naked DNA expression after direct local injection: the influence of the injection speed.

    No full text
    The simple injection of DNA into muscles is known to result in the expression of the injected genes, even though at low and variable levels. We report that this variability in DNA expression is partly dependent on the injection speed. The acceleration of the injection speed from values around 2 mul/s up to ones around 25 mul/s (depending on the tissue) results in a significant increase in gene expression in skeletal muscle (280 times on an average) and in liver (50 times) and a nonsignificant sevenfold increase in tumors. Heparin, which inhibits the spontaneous uptake of the injected DNA, also inhibits the increases related to the injection speed. However, at the highest injection speed, this inhibition is not total because very fast injections provoke a direct permeabilization of the cells. This "hydroporation" could be similar to the permeabilization found in the hydrodynamics method based on the fast intravascular injection of a huge volume of DNA. Neither the "hydroporation" nor the heparin-inhibitable uptake mechanism induces histologically detectable lesions. There is a limited muscle cell stress independent of the injection speed. Heterogeneity in the injection speed might thus be an explanation for the variability in DNA expression after simple injection

    Temporal Analysis of Equine Bone Marrow Aspirate During Establishment of Putative Mesenchymal Progenitor Cell Populations

    No full text
    Mesenchymal progenitor cells (MPCs) are often characterized using surface markers after expansion and treatment in culture. There are no studies directly comparing gene and protein markers in undifferentiated samples during the very early phases of culture. The goal of this study was to evaluate temporal gene and protein expression changes during establishment of equine MPC cultures. Bone marrow aspirate was obtained from 35 horses and processed by density gradient centrifugation. In freshly isolated bone marrow, mononuclear cells had variable expression of CD44, CD11a/CD18, CD90, and CD45RB cell surface molecules. After 2 h of culture, bone marrow mononuclear cells had a phenotype of CD44hi, CD29hi, CD90lo, CD11a/CD18hi, and CD45RBlo. Isolated mononuclear cells were analyzed by flow cytometry and RT-qPCR at 2, 7, 14, 21, and 30 days of culture. At all culture time points, gene expression was in agreement with cell surface protein expression. In established cultures of MPCs, cells remained robustly positive for CD44 and CD29. The proportion of positive cells and the mean fluorescence intensity of positive cells increased in CD90 expression as MPC cultures became more homogeneous. Inversely, the population of cells in culture decreased expression of CD11a/CD18 and CD45RB molecules over time. The decreased expression of the latter molecules makes these useful negative markers of established MPC cultures under normal expansion conditions. The results of this study demonstrate numerous dynamic changes in cell surface molecule expression during early establishment of MPC populations, which may aid to improve MPC isolation methods for research or therapeutic applications
    corecore