57 research outputs found

    Staphylococcus aureus From Goats Are Genetically Heterogeneous and Distinct to Bovine Ones

    Get PDF
    Staphylococcus aureus is one of the major pathogens responsible for intramammary infections in small ruminants, causing severe economic losses in dairy farms. In addition, S. aureus can contaminate milk and dairy products and produce staphylococcal enterotoxins, being responsible for staphylococcal food poisoning. Currently, data on the population structure and the virulence gene patterns of S. aureus strains isolated from goat milk is limited. Therefore, this study aimed at defining Ribosomal Spacer PCR (RS-PCR) genotypes, clonal complexes (CC), spa types, and virulence gene profiles of S. aureus isolated from goat milk samples from Lombardy region of Italy. A total of 295 S. aureus isolates from 65 goat bulk tank milk samples were genotyped by RS-PCR. spa typing and virulence gene patterns of a subgroup of 88 isolates were determined, and MLST was performed on a further subgroup of 39 isolates, representing all the spa types identified during the analysis. This study revealed 7 major genotypic clusters (CLR, CLAA, CLZ, CLAW, CLBW, CLS, and CLI), of which S. aureus CLR (19.8%) was the most common. A total of 26 different spa types were detected, the most prevalent types were t1773 (24%), t5428 (22.7%), and t2678 (12.5%). Overall, 44.3% of all isolates harbored at least one enterotoxin gene. The most prevalent was the combination of sec-sel genes (35.2%). Based on their MLST, isolates were assigned to 14 different CC, with majority grouped as CC133 (24%), CC130 (19.6%), and CC522 (19.6%). The caprine S. aureus population was depicted with a minimum spanning tree and an evolutionary analysis based on spa typing and MLST, respectively. Then, the variability of such strains was compared to that of bovine strains isolated in the same space-time span. Our results confirmed that S. aureus isolates from goats have wide genetic variability and differ from the bovine strains, supporting the idea that S. aureus from small ruminants may constitute a distinct population

    Genomic Investigation of Virulence Potential in Shiga Toxin Escherichia coli (STEC) Strains From a Semi-Hard Raw Milk Cheese

    Get PDF
    Shiga-toxin-producing Escherichia coli (STEC) represents a significant cause of foodborne disease. In the last years, an increasing number of STEC infections associated with the consumption of raw and pasteurized milk cheese have been reported, contributing to raise the public awareness. The aim of this study is to evaluate the main genomic features of STEC strains isolated from a semi-hard raw milk cheese, focusing on their pathogenic potential. The analysis of 75 cheese samples collected during the period between April 2019 and January 2020 led to the isolation of seven strains from four stx-positive enrichment. The genome investigation evidenced the persistence of two serotypes, O174:H2 and O116:H48. All strains carried at least one stx gene and were negative for eae gene. The virulence gene pattern was homogeneous among the serogroup/ST and included adherence factors (lpfA, iha, ompT, papC, saa, sab, hra, and hes), enterohemolysin (ehxA), serum resistance (iss, tra), cytotoxin-encoding genes like epeA and espP, and the Locus of Adhesion and Autoaggregation Pathogenicity Islands (LAA PAIs) typically found in Locus of Enterocyte Effacement (LEE)-negative STEC. Genome plasticity indicators, namely, prophagic sequences carrying stx genes and plasmid replicons, were detected, leading to the possibility to share virulence determinants with other strains. Overall, our work adds new knowledge on STEC monitoring in raw milk dairy products, underlining the fundamental role of whole genome sequencing (WGS) for typing these unknown isolates. Since, up to now, some details about STEC pathogenesis mechanism is lacking, the continuous monitoring in order to protect human health and increase knowledge about STEC genetic features becomes essential

    Draft genome sequence of lactobacillus helveticus Lh 23, isolated from natural whey starter

    Get PDF
    Lactobacillus helveticus is a thermophilic lactic acid bacterium that is widely employed as a starter culture for manufacturing several Swiss and Italian hard-cooked cheeses. The sequencing of L. helveticus Lh 23, which consists of 2,100,230 bp with a GC content of 36.5%, reveals industrially useful traits and interesting metabolic pathways

    Genomic Insights of Enterococcus faecium UC7251, a Multi-Drug Resistant Strain From Ready-to-Eat Food, Highlight the Risk of Antimicrobial Resistance in the Food Chain

    Get PDF
    The presence of multi-drug resistant (MDR) bacteria in ready-to-eat foods comprises a threat for public health due to their ability to acquire and transfer antibiotic-resistant determinants that could settle in the microbiome of the human digestive tract. In this study, Enterococcus faecium UC7251 isolated from a fermented dry sausage was characterized phenotypically and genotypically to hold resistance to multiple antibiotics including aminoglycosides, macrolides, beta-lactams, and tetracyclines. We further investigated this strain following a hybrid sequencing and assembly approach (short and long reads) and determined the presence of various mobile genetic elements (MGEs) responsible of horizontal gene transfer (HGT). On the chromosome of UC7251, we found one integrative and conjugative element (ICE) and a conjugative transposon Tn916-carrying tetracycline resistance. UC7251 carries two plasmids: one small plasmid harboring a rolling circle replication and one MDR megaplasmid. The latter was identified as mobilizable and containing a putative integrative and conjugative element-like region, prophage sequences, insertion sequences, heavy-metal resistance genes, and several antimicrobial resistance (AMR) genes, confirming the phenotypic resistance characteristics. The transmissibility potential of AMR markers was observed through mating experiments, where Tn916-carried tetracycline resistance was transferred at intra- and inter-species levels. This work highlights the significance of constant monitoring of products of animal origin, especially RTE foodstuffs, to stimulate the development of novel strategies in the race for constraining the spread of antibiotic resistance

    Colorimetric point-of-care detection of Clostridium tyrobutyricum spores in milk samples

    Get PDF
    Clostridium tyrobutyricum represents the main spoiling agent responsible for late blowing defects (LBD) in hard and semi-hard cheeses. Its spores are resistant to manufacturing procedures and can germinate during the long ripening process, causing the burst of the cheese paste with a consequent undesirable taste. The lower quality of blown cheeses leads to considerable financial losses for the producers. The early identification of spore contaminations in raw milk samples thus assumes a pivotal role in industrial quality control. Herein, we developed a point of care (POC) testing method for the sensitive detection of C. tyrobutyricum in milk samples, combining fast DNA extraction (with no purification steps) with a robust colorimetric loop-mediated isothermal amplification (LAMP) technique. Our approach allows for the sensitive and specific detection of C. tyrobutyricum spores (limit of detection, LoD: ~2 spores/mL), with the advantage of a clear naked-eye visualization of the results and a potential semi-quantitative discrimination of the contamination level. In addition, we demonstrated the feasibility of this strategy using a portable battery-operated device that allowed both DNA extraction and amplification steps, proving its potential for on-site quality control applications without the requirement of sophisticated instrumentation and trained personnel

    Citrus peel extracts for industrial-scale production of bio-based active food packaging

    Get PDF
    The thermal stability of four different commercial citrus peel extracts was tested and improved by an encapsulation process with ÎČ-cyclodextrins in a spray-dryer. All extracts after the encapsulation process maintained a good antioxidant capacity, with an apparent loss in total phenolic compounds of around 20–25%. In addition, all samples showed good antimicrobial activity (MIC 5–0.625 mg/mL) against Staphylococcus aureus, which was maintained after the encapsulation process (MIC 5–1.25 mg/mL). Based on the antioxidant and antimicrobial activity results, the best-encapsulated citrus extract was selected for incorporation into a polylactic acid/polyhydroxy butyrate (PLA/PHB) film. The latter was then produced on an industrial scale by cast extrusion and was found to be suitable for food contact as it showed overall migration values in different food simulants lower than the legislative limit of 10 mg of non-volatile substances per 1 dm2 of surface area. The UHPLC-HRMS analysis, performed to evaluate the migration of the active compounds, revealed about 13.41% release in food simulant A and 11.02% in food simulant B. Antimicrobial analysis conducted directly on the film showed a growth inhibition activity towards Escherichia coli and Staphylococcus aureus equal to 30 and 60%, respectively

    Netrin-1: Just an axon-guidance factor?

    No full text
    Netrin-1 was first identified as a guidance factor in axon outgrowth during central nervous system development and was later shown to be involved in the morphogenesis of other organs. This study, thus, aimed to verify netrin-1 gene expression in swine antral follicles and to detect netrin-1 protein expression in follicular fluid. In addition, since netrin-1 is also a potential guidance factor for endothelial cells during angiogenesis, an essential event for follicular development, we attempted to verify its effects on swine aortic endothelial cells. Our results show that netrin-1 is present in follicular fluid and is physiologically expressed in both the thecal and granulosa layers from swine antral follicles. Furthermore, by means of an angiogenesis bioassay, we documented the inhibition of vascular neoformation by netrin-1. In conclusion, our results demonstrate that netrin-1 can be synthesized by swine follicular cells and secreted in the follicular fluid where it appears to exert regulatory effects on both follicular function and vascular development
    • 

    corecore