2,073 research outputs found

    Non-standard Dirac adjoint spinor: The emergence of a new dual

    Full text link
    In this present communication we provide a new derivation of the Dirac dual structure by employing a different approach from the originally proposed. Following a general and rigorous mathematical process to compute the dual structure, we investigate if is possible to break the existing "rigidity" in its primordial formulation. For this task, firstly, we look towards to understand the core of the Dirac spinors construction and then, we suggest to built an alternative dual structure for the Dirac spinor, which preserve an invariant norm under any SL(2,C)SL(2,\mathcal{C}) transformation. Finally, we verify if the prominent physical contents are maintained or if it is affected by such construction.Comment: 7 pages, 0 figure

    Questing for Algebraic Mass Dimension One Spinor Fields

    Full text link
    This work deals with new classes of spinors of mass dimension one in Minkowski spacetime. In order to accomplish it, the Lounesto classification scheme and the inversion theorem are going to be used. The algebraic framework shall be revisited by explicating the central point performed by the Fierz aggregate. Then the spinor classification is generalized in order to encompass the new mass dimension one spinors. The spinor operator is shown to play a prominent role to engender the new mass dimension one spinors, accordingly.Comment: 7 pages, final version to appear in Eur. Phys. J.

    Type-4 spinors: transmuting from Elko to single-helicity spinors

    Full text link
    In this communication we briefly report an unexpected theoretical discovery which emerge from the mapping of Elko mass-dimension-one spinors into single helicity spinors. Such procedure unveils a class of spinor which is classified as type-4 spinor field within Lounesto classification. In this paper we explore the underlying physical and mathematical contents of the type-4 spinor.Comment: 9 pages, 0 figure

    Current rectification in a single molecule diode: the role of electrode coupling

    Full text link
    We demonstrate large rectification ratios (> 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 10^5 A/cm^2. By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes

    On the Spinor Representation

    Full text link
    A systematic study of the spinor representation by means of the fermionic physical space is accomplished and implemented. The spinor representation space is shown to be constrained by the Fierz-Pauli-Kofink identities among the spinor bilinear covariants. A robust geometric and topological structure can be manifested from the spinor space, wherein, for instance, the first and second homotopy groups play prominent roles on the underlying physical properties, associated to the fermionic fields.Comment: 16 page
    • …
    corecore