52 research outputs found

    Some Properties of Lysozyme-Lithium Perfluorononanoate Complexes

    No full text
    Mixtures containing lysozyme, LYSO, and a fully fluorinated surfactant, lithium perfluorononanoate, LiPFN, were investigated in a wide range of concentrations and mole ratios. To ensure consistency to the data, a comparison was made, when possible, with the more conventional SDS as surfactant. Molecular solutions, precipitates, and micellar phases have been observed. The region of existence for each phase depends on the LiPFN/LYSO mole ratios, r, and was determined by different experimental methods. Optical absorbance, CD, 19F NMR, viscosity, electrical conductivity, and dielectric relaxation methods were used. Some methods give information on the protein conformation, others on the state of the surfactant or on the collective system properties, respectively. Addition of LiPFN gives rise to a solution, a poly phase dispersion (at low surfactant to protein ratios) and to a micelle-mediated redissolution of the precipitates. Concomitant to the above macroscopic properties, peculiar effects in the state of LYSO are observed. Low amounts of surfactant reduce significantly the amount of alpha-helix in favor of the beta-sheet conformation of the protein. The former is almost completely regained once micelle-assisted redissolution of the complex occurs. The tertiary structure of the protein, conversely, is lost at low surfactant content and never recovered. Such evidence suggests the occurrence of a molten globule conformation for LYSO in micellar media

    Cognitive decline in rheumatoid arthritis: Insight into the molecular pathogenetic mechanisms

    No full text
    Cognitive decline refers to a deterioration of intellectual and learning abilities and related memory problems, and is often associated with behavioral alterations, which prevents sufferers from carrying out the most common daily activities, such as maintaining normal productive interpersonal relationships, communicating, and leading an autonomous life. Numerous studies have highlighted the association between cognitive decline and autoimmune disorders, including rheumatoid arthritis (RA). RA is a chronic, inflammatory, autoimmune disease that involves systems and organs other than the bones and joints, with varying severity among patients. Here, we review the studies investigating the link between cognitive decline and RA, focusing on the main molecular pathogenetic mechanisms involved. The emerging body of data suggests that clinical, psychological, and biological factors may contribute to the pathogenesis of cognitive decline in RA, including cardiovascular complications, chronic pain, depression, inflammatory factors, changes in hormone levels, drug side effects, and genetics. Further studies are warranted in order to fully clarify the basis underlying the association between cognitive decline and RA and to find new possible diagnostic strategies and therapeutic targets for RA patients

    Multiple Sclerosis lesions detection by a hybrid Watershed-Clustering algorithm

    No full text
    Background: Computer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis. Methods: Magnetic Resonance Imaging scans (FLAIR sequences without gadolinium) of 20 patients affected by Multiple Sclerosis with hyperintense lesions were studied. The CAD system consisted of the following automated processing steps: images recording, automated segmentation based on the Watershed algorithm, detection of lesions, extraction of both dynamic and morphological features, and classification of lesions by Cluster Analysis. Results: The investigation was performed on 316 suspect regions including 255 lesion and 61 non-lesion cases. The Receiver Operating Characteristic analysis revealed a highly significant difference between lesions and non-lesions; the diagnostic accuracy was 87% (95% CI: 0.83–0.90), with an appropriate cut-off of 192.8; the sensitivity was 77% and the specificity was 87%. Conclusions: In conclusion, we developed a CAD system by using a modified algorithm for automated image segmentation which may discriminate MS lesions from non-lesions. The proposed method generates a detection out-put that may be support the clinical evaluation

    Entangling COVID-19 associated thrombosis into a secondary antiphospholipid antibody syndrome: Diagnostic and therapeutic perspectives (Review)

    No full text
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel β coronavirus that is the etiological agent of the pandemic coronavirus disease 2019 (COVID-19) that at the time of writing (June 16, 2020) has infected almost 6 million people with some 450,000 deaths. These numbers are still rising daily. Most (some 80%) cases of COVID-19 infection are asymptomatic, a substantial number of cases (15%) require hospitalization and an additional fraction of patients (5%) need recovery in intensive care units. Mortality for COVID-19 infection appears to occur globally between 0.1 and 0.5% of infected patients although the frequency of lethality is significantly augmented in the elderly and in patients with other comorbidities. The development of acute respiratory distress syndrome and episodes of thromboembolism that may lead to disseminated intravascular coagulation (DIC) represent the primary causes of lethality during COVID-19 infection. Increasing evidence suggests that thrombotic diathesis is due to multiple derangements of the coagulation system including marked elevation of D. dimer that correlate negatively with survival. We propose here that the thromboembolic events and eventually the development of DIC provoked by SARS-CoV-2 infection may represent a secondary anti-phospholipid antibody syndrome (APS). We will apply both Baconian inductivism and Cartesian deductivism to prove that secondary APS is likely responsible for coagulopathy during the course of COVID-19 infection. Diagnostic and therapeutic implications of this are also discussed
    corecore