33 research outputs found

    Motion compensated De-interlacing with Film Mode Adaptation.

    Get PDF
    The invention relates to a method for de-interlacing a hybrid video sequence using at least one estimated motion vector for interpolating pixels. Field for petition patents, typically occurring in film originated video material, disturb the function of de-interlacing algorithm designed to convert interlaced video single into progressively scanned video. Therefore a mode decision has to be applied for local adaptation to the film/video mode, which is possible by defining values for a first motion vector and a second motion vector, calculating at least one first pixel using at least one pixel of previous image and one first motion vector, calculating at least one second pixel using at least one pixel of a next image and one second motion vector, calculating a reliability of said first and the second motion vector by comparing at least said first pixel with at least said second pixel the first and said second motion vectors being pre-defined for said calculation of reliability, and estimation an actual value for a motion vector, which turned out to be most reliable for de-interlacing said image

    Motion compensated De-interlacing with Film Mode Adaptation.

    Get PDF
    The invention relates to a method for de-interlacing a hybrid video sequence using at least one estimated motion vector for interpolating pixels. Field for petition patents, typically occurring in film originated video material, disturb the function of de-interlacing algorithm designed to convert interlaced video single into progressively scanned video. Therefore a mode decision has to be applied for local adaptation to the film/video mode, which is possible by defining values for a first motion vector and a second motion vector, calculating at least one first pixel using at least one pixel of previous image and one first motion vector, calculating at least one second pixel using at least one pixel of a next image and one second motion vector, calculating a reliability of said first and the second motion vector by comparing at least said first pixel with at least said second pixel the first and said second motion vectors being pre-defined for said calculation of reliability, and estimation an actual value for a motion vector, which turned out to be most reliable for de-interlacing said image

    Toward Supergravity Spectral Action

    Full text link
    A spectral action of Euclidean supergravity is proposed. We calculate up to a4a_4, the Seeley-Dewitt coefficients in the expansion of the spectral action associated to the supergravity Dirac operator. This is possible because in simple supergravity, as in pure gravity, a well defined and mathematically consistent Dirac operator can be constructed.Comment: 10pages, no figures, matches published versio

    Model calculations of the proximity effect in finite multilayers

    Full text link
    The proximity-effect theory developed by Takahashi and Tachiki for infinite multilayers is applied to multilayer systems with a finite number of layers in the growth direction. The purpose is to investigate why previous applications to infinite multilayers fail to describe the measured data satisfactorily. Surface superconductivity may appear, depending on the thickness of the covering normal metallic N layers on both the top and the bottom. The parameters used are characteristic for V/Ag and Nb/Pd systems. The nucleation process is studied as a function of the system parameters.Comment: 12 pages, 15 figures, RevTe

    Proximity effects in the superconductor / heavy fermion bilayer system Nb / CeCu_6

    Get PDF
    We have investigated the proximity effect between a superconductor (Nb) and a 'Heavy Fermion' system (CeCu_6) by measuring critical temperatures TcT_c and parallel critical fields H_{c2}^{\parallel}(T) of Nb films with varying thickness deposited on 75 nm thick films of CeCu_6, and comparing the results with the behavior of similar films deposited on the normal metal Cu. For Nb on CeCu_6 we find a strong decrease of T_c with decreasing Nb thickness and a finite critical thickness of the order of 10 nm. Also, dimensional crossovers in H_{c2}^{\parallel}(T) are completely absent, in strong contrast with Nb/Cu. Analysis of the data by a proximity effect model based on the Takahashi-Tachiki theory shows that the data can be explained by taking into account both the high effective mass (or low electronic diffusion constant), {\it and} the large density of states at the Fermi energy which characterize the Heavy Fermion metal.Comment: 7 pages, 2 figure. Manuscript has been submitted to a refereed journa

    The influence of the boundary resistivity on the proximity effect

    Get PDF
    We apply the theory of Takahashi and Tachiki in order to explain theoretically the dependence of the upper critical magnetic field of a S/N multilayer on the temperature. This problem has been already investigated in the literature, but with a use of an unphysical scaling parameter for the coherence length. We show explicitely that, in order to describe the data, such an unphysical parameter is unnecessary if one takes into account the boundary resisitivity of the S/N interface. We obtain a very good agreement with the experiments for the multilayer systems Nb/Cu and V/Ag, with various layer thicknesses.Comment: 12 pages, 5 figure

    On the Dirac Eigenvalues as Observables of the on-shell N=2 D=4 Euclidean Supergravity

    Full text link
    We generalize previous works on the Dirac eigenvalues as dynamical variables of the Euclidean gravity and N=1 D=4 supergravity to on-shell N=2 D=4 Euclidean supergravity. The covariant phase space of the theory is defined as as the space of the solutions of the equations of motion modulo the on-shell gauge transformations. In this space we define the Poisson brackets and compute their value for the Dirac eigenvalues.Comment: 10 pages, LATeX fil

    Andreev states, supercurrents and interface effects in clean SN multilayers

    Full text link
    We present results for the local density of states in the S and N layers of a SN multilayer, and the supercurrent, based on a Green's function formalism, as an extension of previous calculations on NS, SNS and SNSNS systems. The gap function is determined selfconsistently. Our systems are chosen to have a finite transverse width. We focus on phenomena which occur at so-called critical transverse widths, at which a new transverse mode is starting to contribute. It appears, that for an arbitrary width the Andreev approximation (AA), which takes into account only Andreev reflection at the SN interfaces, works well. We show that at a critical width the AA breaks down. An exact treatment is required, which considers also ordinary reflections. In addition, we study the influence of an interface barrier on the coupling between the S-layers

    Deviations from mean-field behavior in disordered nanoscale superconductor-normal-metal-superconductor arrays

    Full text link
    We have fabricated quasi-two-dimensional arrays of nano-scale Pb grains coupled by an overlayer of Ag grains. Their temperature dependent resistive transitions follow predictions for an array of mesoscopic superconductor-normal-superconductor junctions. The decrease of their transition temperatures with Ag overlayer thickness systematically deviates from the Cooper limit theory of the proximity effect as the Pb grain size decreases. The deviations occur when the estimated number of Cooper pairs per grain is less than or equal to 1 and suggest the approach to a superconductor to metal transition.Comment: 11 pages, Pdf only, Revisions include text and figure
    corecore