418 research outputs found

    Neighbourhood Shading Impacts on Passive Adaptive Façade Collective Behaviour

    Get PDF
    The past decade witnessed a shift in adaptive facades from energy-intensive complex systems to material-based actuated facades. The latter, however, were only developed with limited control in shape memory alloy applications, and more generally designed as independent components. The perception of the component within a system as a self-regulating entity was shown to widen the behavioural response and intelligence of an adaptive system in several projects. On the other hand, its range of impact and integration as a design factor were not targeted at full breadth in the literature. The study’s objective was to investigate the incorporation of neighbourhood shading behaviour of a shape memory alloy-actuated façade component on the entire system. Based on a designed adaptive component, the research identifies the shading impact on the actuators’ incident solar radiation as well as its hourly and seasonal range, and thus encourages a better prediction of collective behaviour

    Geometry-material coordination for passive adaptive solar morphing envelopes

    Get PDF
    The cost-intensive and mechanical complexity natures of the adaptive facades of the past decades drifted designers and researchers’ interest towards passive material-based actuation systems. Architectural applications using the latter showed, however, a few limitations restricting the output possibility space to options that rely entirely on one material’s phase characteristic. This study aims to investigate the potential of expanding a shape memory alloy-actuated facade’s output from one that is limited and hardly controllable in the case of entirely passive actuation to one that can produce a specific desired performative target. This is explored through coordinating between geometry movement connections of an adaptive component of four integrated shape memory alloys, which work on tailoring the geometry-material-climate relations of the responsive system. The research findings suggest that the integration of geometry, material, and their connections in the design of a SMA solar morphing envelope lead to the development of a wider range of behavioural system outputs. The variety instilled through these added dimensions promoted diversity and adaptability of output for a flexible range of responses and higher performative gains

    Loss of MECP2 Leads to Activation of P53 and Neuronal Senescence.

    Get PDF
    To determine the role for mutations of MECP2 in Rett syndrome, we generated isogenic lines of human induced pluripotent stem cells, neural progenitor cells, and neurons from patient fibroblasts with and without MECP2 expression in an attempt to recapitulate disease phenotypes in vitro. Molecular profiling uncovered neuronal-specific gene expression changes, including induction of a senescence-associated secretory phenotype (SASP) program. Patient-derived neurons made without MECP2 showed signs of stress, including induction of P53, and senescence. The induction of P53 appeared to affect dendritic branching in Rett neurons, as P53 inhibition restored dendritic complexity. The induction of P53 targets was also detectable in analyses of human Rett patient brain, suggesting that this disease-in-a-dish model can provide relevant insights into the human disorder

    Façade apertures optimization: integrating cross-ventilation performance analysis in fluid dynamics simulation

    Get PDF
    Performance-oriented design has as a primary aim to introduce spaces that achieve acceptable levels of human comfort. Wind-induced airflow plays a significant role in the improving occupants' comfort in a building. This paper explores the extent to which simulation of natural airflow can potentially be a contributing parameter in the conception of performance-aware designs. Testing the natural ventilation performance of a pavilion, the study employs Fast Fluid Dynamics simulation. A performance analysis is conducted, whereby an array of automated feedback loops carried out by a genetic algorithm can produce a number of acceptable solutions as regards the optimization of facades' openings. The experimentation conducted proves the ability of the model to yield design instances that fulfill a number of environmental criteria related to airflow and human comfort. In this light, the paper suggests that the aforementioned method can be used as an experimentation platform to influence the direction a designer may take when considering a design proposal

    The BAF and PRC2 Complex Subunits Dpf2 and Eed Antagonistically Converge on Tbx3 to Control ESC Differentiation.

    Get PDF
    BAF complexes are composed of different subunits with varying functional and developmental roles, although many subunits have not been examined in depth. Here we show that the Baf45 subunit Dpf2 maintains pluripotency and ESC differentiation potential. Dpf2 co-occupies enhancers with Oct4, Sox2, p300, and the BAF subunit Brg1, and deleting Dpf2 perturbs ESC self-renewal, induces repression of Tbx3, and impairs mesendodermal differentiation without dramatically altering Brg1 localization. Mesendodermal differentiation can be rescued by restoring Tbx3 expression, whose distal enhancer is positively regulated by Dpf2-dependent H3K27ac maintenance and recruitment of pluripotency TFs and Brg1. In contrast, the PRC2 subunit Eed binds an intragenic Tbx3 enhancer to oppose Dpf2-dependent Tbx3 expression and mesendodermal differentiation. The PRC2 subunit Ezh2 likewise opposes Dpf2-dependent differentiation through a distinct mechanism involving Nanog repression. Together, these findings delineate distinct mechanistic roles for specific BAF and PRC2 subunits during ESC differentiation

    Proteomic and protein interaction network analysis of human T lymphocytes during cell-cycle entry

    Get PDF
    Proteomic analysis of T cells emerging from quiescence identifies dynamic network-level changes in key cellular processes. Disruption of two such processes, ribosome biogenesis and RNA splicing, reveals that the programs controlling cell growth and cell-cycle entry are separable
    corecore