117 research outputs found

    Extremal covariant POVM's

    Full text link
    We consider the convex set of positive operator valued measures (POVM) which are covariant under a finite dimensional unitary projective representation of a group. We derive a general characterization for the extremal points, and provide bounds for the ranks of the corresponding POVM densities, also relating extremality to uniqueness and stability of optimized measurements. Examples of applications are given.Comment: 15 pages, no figure

    Quantum information becomes classical when distributed to many users

    Get PDF
    Any physical transformation that equally distributes quantum information over a large number M of users can be approximated by a classical broadcasting of measurement outcomes. The accuracy of the approximation is at least of the order 1/M. In particular, quantum cloning of pure and mixed states can be approximated via quantum state estimation. As an example, for optimal qubit cloning with 10 output copies, a single user has error probability p > 0.45 in distinguishing classical from quantum output--a value close to the error probability of the random guess.Comment: 4 pages, no figures, published versio

    Extremal covariant measurements

    Full text link
    We characterize the extremal points of the convex set of quantum measurements that are covariant under a finite-dimensional projective representation of a compact group, with action of the group on the measurement probability space which is generally non-transitive. In this case the POVM density is made of multiple orbits of positive operators, and, in the case of extremal measurements, we provide a bound for the number of orbits and for the rank of POVM elements. Two relevant applications are considered, concerning state discrimination with mutually unbiased bases and the maximization of the mutual information.Comment: 11 pages, no figure

    How continuous quantum measurements in finite dimension are actually discrete

    Get PDF
    We show that in finite dimension a quantum measurement with continuous set of outcomes is always equivalent to a continuous random choice of measurements with only finite outcomes.Comment: 4 pages, 1 figur

    On defining the Hamiltonian beyond quantum theory

    Full text link
    Energy is a crucial concept within classical and quantum physics. An essential tool to quantify energy is the Hamiltonian. Here, we consider how to define a Hamiltonian in general probabilistic theories, a framework in which quantum theory is a special case. We list desiderata which the definition should meet. For 3-dimensional systems, we provide a fully-defined recipe which satisfies these desiderata. We discuss the higher dimensional case where some freedom of choice is left remaining. We apply the definition to example toy theories, and discuss how the quantum notion of time evolution as a phase between energy eigenstates generalises to other theories.Comment: Authors' accepted manuscript for inclusion in the Foundations of Physics topical collection on Foundational Aspects of Quantum Informatio

    Optimal cloning of unitary transformations

    Full text link
    After proving a general no-cloning theorem for black boxes, we derive the optimal universal cloning of unitary transformations, from one to two copies. The optimal cloner is realized by quantum channels with memory, and greately outperforms the optimal measure-and-reprepare cloning strategy. Applications are outlined, including two-way quantum cryptographic protocols.Comment: 4 pages, 1 figure, published versio

    Quantum Circuits for the Unitary Permutation Problem

    Full text link
    We consider the Unitary Permutation problem which consists, given nn unitary gates U1,
,UnU_1, \ldots, U_n and a permutation σ\sigma of {1,
,n}\{1,\ldots, n\}, in applying the unitary gates in the order specified by σ\sigma, i.e. in performing Uσ(n)
Uσ(1)U_{\sigma(n)}\ldots U_{\sigma(1)}. This problem has been introduced and investigated by Colnaghi et al. where two models of computations are considered. This first is the (standard) model of query complexity: the complexity measure is the number of calls to any of the unitary gates UiU_i in a quantum circuit which solves the problem. The second model provides quantum switches and treats unitary transformations as inputs of second order. In that case the complexity measure is the number of quantum switches. In their paper, Colnaghi et al. have shown that the problem can be solved within n2n^2 calls in the query model and n(n−1)2\frac{n(n-1)}2 quantum switches in the new model. We refine these results by proving that nlog⁥2(n)+Θ(n)n\log_2(n) +\Theta(n) quantum switches are necessary and sufficient to solve this problem, whereas n2−2n+4n^2-2n+4 calls are sufficient to solve this problem in the standard quantum circuit model. We prove, with an additional assumption on the family of gates used in the circuits, that n2−o(n7/4+Ï”)n^2-o(n^{7/4+\epsilon}) queries are required, for any Ï”>0\epsilon >0. The upper and lower bounds for the standard quantum circuit model are established by pointing out connections with the permutation as substring problem introduced by Karp.Comment: 8 pages, 5 figure

    Quantum thermodynamics with missing reference frames: Decompositions of free energy into non-increasing components

    Full text link
    If an absolute reference frame with respect to time, position, or orientation is missing one can only implement quantum operations which are covariant with respect to the corresponding unitary symmetry group G. Extending observations of Vaccaro et al., I argue that the free energy of a quantum system with G-invariant Hamiltonian then splits up into the Holevo information of the orbit of the state under the action of G and the free energy of its orbit average. These two kinds of free energy cannot be converted into each other. The first component is subadditive and the second superadditive; in the limit of infinitely many copies only the usual free energy matters. Refined splittings of free energy into more than two independent (non-increasing) terms can be defined by averaging over probability measures on G that differ from the Haar measure. Even in the presence of a reference frame, these results provide lower bounds on the amount of free energy that is lost after applying a covariant channel. If the channel properly decreases one of these quantities, it decreases the free energy necessarily at least by the same amount, since it is unable to convert the different forms of free energies into each other.Comment: 17 pages, latex, 1 figur

    Optimal estimation of group transformations using entanglement

    Full text link
    We derive the optimal input states and the optimal quantum measurements for estimating the unitary action of a given symmetry group, showing how the optimal performance is obtained with a suitable use of entanglement. Optimality is defined in a Bayesian sense, as minimization of the average value of a given cost function. We introduce a class of cost functions that generalizes the Holevo class for phase estimation, and show that for states of the optimal form all functions in such a class lead to the same optimal measurement. A first application of the main result is the complete proof of the optimal efficiency in the transmission of a Cartesian reference frame. As a second application, we derive the optimal estimation of a completely unknown two-qubit maximally entangled state, provided that N copies of the state are available. In the limit of large N, the fidelity of the optimal estimation is shown to be 1-3/(4N).Comment: 11 pages, no figure

    Extremal quantum cloning machines

    Full text link
    We investigate the problem of cloning a set of states that is invariant under the action of an irreducible group representation. We then characterize the cloners that are "extremal" in the convex set of group covariant cloning machines, among which one can restrict the search for optimal cloners. For a set of states that is invariant under the discrete Weyl-Heisenberg group, we show that all extremal cloners can be unitarily realized using the so-called "double-Bell states", whence providing a general proof of the popular ansatz used in the literature for finding optimal cloners in a variety of settings. Our result can also be generalized to continuous-variable optimal cloning in infinite dimensions, where the covariance group is the customary Weyl-Heisenberg group of displacements.Comment: revised version accepted for publicatio
    • 

    corecore