203 research outputs found

    Random Bond Effect in the Quantum Spin System (Tl1−x_{1-x}Kx_{x})CuCl3_3

    Full text link
    The effect of exchange bond randomness on the ground state and the field-induced magnetic ordering was investigated through magnetization measurements in the spin-1/2 mixed quantum spin system (Tl1−x_{1-x}Kx_{x})CuCl3_3 for x<0.36x<0.36. Both parent compounds TlCuCl3_3 and KCuCl3_3 are coupled spin dimer systems, which have the singlet ground state with excitation gaps Δ/kB=7.7{\Delta}/k_{\rm B}=7.7 K and 31 K, respectively. Due to bond randomness, the singlet ground state turns into the magnetic state with finite susceptibility, nevertheless, the excitation gap remains. Field-induced magnetic ordering, which can be described by the Bose condensation of excited triplets, magnons, was observed as in the parent systems. The phase transition temperature is suppressed by the bond randomness. This behavior may be attributed to the localization effect.Comment: 19 pages, 7 figures, 12 eps files, revtex, will appear in PR

    US adolescent food intake trends from 1965 to 1996

    Get PDF
    AIM—To examine adolescent food consumption trends in the United States with important chronic disease implications.METHODS—Analysis of dietary intake data from four nationally representative United States Department of Agriculture surveys of individuals 11-18 years of age (n = 12 498).RESULTS—From 1965 to 1996, a considerable shift in the adolescent diet occurred. Total energy intake decreased as did the proportion of energy from total fat (39% to 32%) and saturated fat (15% to 12%). Concurrent increases occurred in the consumption of higher fat potatoes and mixed dishes (pizza, macaroni cheese). Lower fat milks replaced higher fat milks but total milk consumption decreased by 36%. This decrease was accompanied by an increase in consumption of soft drinks and non-citrus juices. An increase in high fat potato consumption led to an increase in vegetable intake but the number of servings for fruits and vegetables is still below the recommended five per day. Iron, folate, and calcium intakes continue to be below recommendations for girls.CONCLUSIONS—These trends, far greater than for US adults, may compromise health of the future US population

    Dispersive magnetic excitations in the S=1 antiferromagnet Ba3_3Mn2_2O8_8

    Full text link
    We present powder inelastic neutron scattering measurements of the S=1 dimerized antiferromagnet Ba3_3Mn2_2O8_8. The T=1.4T=1.4 K magnetic spectrum exhibits a spin-gap of Δ≈1.0\Delta \approx 1.0 meV and a dispersive spectrum with a bandwidth of approximately 1.5 meV. Comparison to coupled dimer models describe the dispersion and scattering intensity accurately and determine the exchange constants in Ba3_3Mn2_2O8_8. The wave vector dependent scattering intensity confirms the proposed S=1 dimer bond. Temperature dependent measurements of the magnetic excitations indicate the presence of both singlet-triplet and thermally activated triplet-quintet excitations.Comment: 8 pages, 8 figures, Submitted to Physical Review B, Resubmited versio

    Field- and pressure-induced magnetic quantum phase transitions in TlCuCl_3

    Full text link
    Thallium copper chloride is a quantum spin liquid of S = 1/2 Cu^2+ dimers. Interdimer superexchange interactions give a three-dimensional magnon dispersion and a spin gap significantly smaller than the dimer coupling. This gap is closed by an applied hydrostatic pressure of approximately 2kbar or by a magnetic field of 5.6T, offering a unique opportunity to explore the both types of quantum phase transition and their associated critical phenomena. We use a bond-operator formulation to obtain a continuous description of all disordered and ordered phases, and thus of the transitions separating these. Both pressure- and field-induced transitions may be considered as the Bose-Einstein condensation of triplet magnon excitations, and the respective phases of staggered magnetic order as linear combinations of dimer singlet and triplet modes. We focus on the evolution with applied pressure and field of the magnetic excitations in each phase, and in particular on the gapless (Goldstone) modes in the ordered regimes which correspond to phase fluctuations of the ordered moment. The bond-operator description yields a good account of the magnetization curves and of magnon dispersion relations observed by inelastic neutron scattering under applied fields, and a variety of experimental predictions for pressure-dependent measurements.Comment: 20 pages, 17 figure

    Frustration-Induced Two Dimensional Quantum Disordered Phase in Piperazinium Hexachlorodicuprate

    Full text link
    Piperazinium Hexachlorodicuprate (PHCC) is shown to be a frustrated quasi-two-dimensional quantum Heisenberg antiferromagnet with a gapped spectrum. Zero-field inelastic neutron scattering and susceptibility and specific heat measurements as a function of applied magnetic field are presented. At T = 1.5 K, the magnetic excitation spectrum is dominated by a single propagating mode with a gap, Delta = 1 meV, and bandwidth of approximately 1.8 meV in the (h0l) plane. The mode has no dispersion along the b* direction indicating that neighboring a-c planes of the triclinic structure are magnetically decoupled. The heat capacity shows a reduction of the gap as a function of applied magnetic field in agreement with a singlet-triplet excitation spectrum. A field-induced ordered phase is observed in heat capacity and magnetic susceptibility measurements for magnetic fields greater than H_c1 approximately equal to 7.5 Tesla. Analysis of the neutron scattering data reveals the important exchange interactions and indicates that some of these are highly frustrated.Comment: 13 pages with 14 figures, 7 pages of text, 6 pages of figures. Submitted to Phys. Rev. B 4/7/2001. email comments to [email protected] or [email protected]

    Three-Dimensional Ordering in Weakly Coupled Antiferromagnetic Ladders and Chains

    Full text link
    A theoretical description is presented for low-temperature magnetic-field induced three-dimensional (3D) ordering transitions in strongly anisotropic quantum antiferromagnets, consisting of weakly coupled antiferromagnetic spin-1/2 chains and ladders. First, effective continuum field theories are derived for the one-dimensional subsystems. Then the Luttinger parameters, which determine the low-temperature susceptibilities of the chains and ladders, are calculated from the Bethe ansatz solution for these effective models. The 3D ordering transition line is obtained using a random phase approximation for the weak inter-chain (inter-ladder) coupling. Finally, considering a Ginzburg criterion, the fluctuation corrections to this approach are shown to be small. The nature of the 3D ordered phase resembles a Bose condensate of integer-spin magnons. It is proposed that for systems with higher spin degrees of freedom, e.g. N-leg spin-1/2 ladders, multi-component condensates can occur at high magnetic fields.Comment: RevTex, 18 pages with 7 figure

    Magnetization plateaux in dimerized spin ladder arrays

    Get PDF
    We investigate the ground state magnetization plateaux appearing in spin 1/2 two-leg ladders built up from dimerized antiferromagnetic Heisenberg chains and dimerized zig-zag interchain couplings. Using both Abelian bosonization and Lanczos methods we find that the system yields rather unusual plateaux and exhibits massive and massless phases for specific choices or ``tuning'' of exchange interactions. The relevance of this behavior in the study of NH_4CuCl_3 is discussed.Comment: 9 pages, RevTeX, 11 postscript figure

    Field-Induced Magnetic Order in Quantum Spin Liquids

    Full text link
    We study magnetic field-induced three-dimensional ordering transitions in low-dimensional quantum spin liquids, such as weakly coupled, antiferromagnetic spin-1/2 Heisenberg dimers and ladders. Using stochastic series expansion quantum Monte Carlo simulations, thermodynamic response functions are obtained down to ultra-low temperatures. We extract the critical scaling exponents which dictate the power-law dependence of the transition temperature on the applied magnetic field. These are compared with recent experiments on candidate materials and with predictions for the Bose-Einstein condensation of magnons obtained in mean-field theory.Comment: RevTex, 4 pages with 5 figure
    • …
    corecore