1,112 research outputs found
Predictions of understory light conditions in northern hardwood forests following parameterization, sensitivity analysis, and tests of the SORTIE light model
We parameterized the light model of SORTIE for northern hardwoods in eastern Canada, and performed a sensitivity analysis and validation tests of the model before using it to predict the effect of various types of partial cutting on understorey light conditions. The parameterization was done by characterizing the crown geometry and openness of sugar maple (Acer saccharum Marsh.), yellow birch (Betula alleghaniensis Britt.), and beech (Fagus grandifolia Ehrh.). Those results indicated that beech casts a deeper shade than sugar maple and yellow birch. The sensitivity analysis showed that the model predictions were more sensitive to variations in the crown geometry parameters, especially the crown radius parameter, than to variations in crown openness. Validation tests of the model were performed in both mapped and unmapped plots by comparing light predicted by SORTIE to light measured in the field using hemispherical photographs and sensor-based measurements. In mapped stands, the model provided reasonably accurate predictions of the overall variation in understorey light levels between 2 and 30% full sunlight, but the predictions tended to lack spatial precision. In unmapped stands, SORTIE accurately predicted stand-level mean light availability at 5 m aboveground for stands ranging in basal area from 19 to 27 m2/ha. At heights lower than 5 m, SORTIE accurately predicted the light availability in a recent selection cut with a low density of understorey vegetation, but tended to overestimate light availability in stands with relatively dense undergrowth. Finally, a demonstration of the possible usefulness of the SORTIE light model is presented by using the model to compare the proportion of various light microsites created by a variety of selection cutting systems in use in eastern Canada (selection cutting with different harvesting intensities, group selection, and patch selection)
Use of a spatially explicit individual-tree model (SORTIE/BC) to explore the implications of patchiness in structurally complex forests
The discipline of silviculture is evolving rapidly, moving from an agricultural model that emphasized simple stand structures toward a natural disturbance- or ecosystem-based model where stands are managed for multiple species and complex structures. Predicting stand dynamics and future yields in mixed-species complex structured stands cannot be easily accomplished with traditional field experiments. We outline the development and structure of SORTIE/BC, a descendent of the SORTIE model. SORTIE/BC is a light-mediated, spatially explicit, mixed-species forest model that makes population dynamic forecasts for juvenile and adult trees. We use the model to simulate partial cutting prescriptions in temperate deciduous, boreal and temperate coniferous mixed-species forests. The species, amount and spatial pattern of canopy tree removal had a major influence on understory light environments. Low and uniform removal of canopy trees were less successful in favouring the growth and survival of regenerating trees of intermediate to shade intolerant species and the growth of retained canopy trees than patch removal. In the boreal mixedwood, strip-cutting can maintain mixed stands but careful attention must be paid to buffer and strip management to optimize stand growth. We conclude that SORTIE/ BC can be very useful to explore and explain the silvicultural implications of complex silvicultural prescriptions for which there are no existing long-term experiments. © 2003 Elsevier B.V. All rights reserved
Shift Towards P Limitation with N Deposition?
Atmospheric nitrogen (N) deposition is altering biogeochemical cycling in forests and interconnected lakes of the northeastern US, and may shift nutrient limitation from N toward other essential elements, such as phosphorus (P). Whether this shift is occurring relative to N deposition gradients across the northeastern US has not been investigated. We used datasets for the northeastern US and the Adirondack sub-region to evaluate whether P limitation is increasing where N deposition is high at two geographic scales, based on N:P mass ratios. Using a model- selection approach, we determined that foliar N for dominant tree species and lake dissolved inorganic N (DIN) increased coincident with increasing N deposition, independent of relationships between foliar N or lake DIN and precipitation or temperature. Foliar P also increased with N deposition across the northeastern US for seven of eight deciduous species, but changed less across the Adirondacks. Foliar N:P therefore declined at the highest levels of N deposition for most deciduous species across the region (remaining nearly constant for most conifers and increasing only for black cherry and hemlock), but increased across all species in the Adirondacks. Ratios between DIN and total P (DIN:TP) in lakes were unrelated to N deposition regionally but increased across the Adirondacks. Thus, nutrient limitation patterns shifted from N toward P for dominant trees, and further toward P for predominantly P-limited lakes, at the sub-regional but not regional scale. For the northeastern US overall, accumulated N deposition may be insufficient to drive nutrient limitation from N toward P; alternatively, elements other than P (e.g., calcium, magnesium) may become limiting as N accumulates. The consistent Adirondack foliar and lake response could provide early indication of shifts toward P limitation within the northeastern US, and together with regional patterns, suggests that foliar chemistry could be a predictor of lake chemistry in the context of N deposition across the region
Fission of a multiphase membrane tube
A common mechanism for intracellular transport is the use of controlled
deformations of the membrane to create spherical or tubular buds. While the
basic physical properties of homogeneous membranes are relatively well-known,
the effects of inhomogeneities within membranes are very much an active field
of study. Membrane domains enriched in certain lipids in particular are
attracting much attention, and in this Letter we investigate the effect of such
domains on the shape and fate of membrane tubes. Recent experiments have
demonstrated that forced lipid phase separation can trigger tube fission, and
we demonstrate how this can be understood purely from the difference in elastic
constants between the domains. Moreover, the proposed model predicts timescales
for fission that agree well with experimental findings
Recommended from our members
Neighborhood Analyses Of Canopy Tree Competition Along Environmental Gradients In New England Forests
We use permanent-plot data from the USDA Forest Service's Forest Inventory and Analysis (FIA) program for an analysis of the effects of competition on tree growth along environmental gradients for the 14 most abundant tree species in forests of northern New England, USA. Our analysis estimates actual growth for each individual tree of a given species as a function of average potential diameter growth modified by three sets of scalars that quantify the effects on growth of (1) initial target tree size (dbh), (2) local environmental conditions, and (3) crowding by neighboring trees. Potential growth of seven of the 14 species varied along at least one of the two environmental axes identified by an ordination of relative abundance of species in plots. The relative abundances of a number of species were significantly displaced from sites where they showed maximum potential growth. In all of these cases, abundance was displaced to the more resource-poor end of the environmental gradient (either low fertility or low moisture). The pattern was most pronounced among early successional species, whereas late-successional species reached their greatest abundance on sites where they also showed the highest growth in the absence of competition. The analysis also provides empirical estimates of the strength of intraspecific and interspecific competitive effects of neighbors. For all but one of the species, our results led us to reject the hypothesis that all species of competitors have equivalent effects on a target species. Most of the individual pairwise interactions were strongly asymmetric. There was a clear competitive hierarchy among the four most shade-tolerant species, and a separate competitive hierarchy among the shade-intolerant species. Our results suggest that timber yield following selective logging will vary dramatically depending on the configuration of the residual canopy, because of interspecific variation in the magnitude of both the competitive effects of different species of neighbors and the competitive responses of different species of target trees to neighbors. The matrix of competition coefficients suggests that there may be clear benefits in managing for specific mixtures of species within local neighborhoods within stands
Geometry of lipid vesicle adhesion
The adhesion of a lipid membrane vesicle to a fixed substrate is examined
from a geometrical point of view. This vesicle is described by the Helfrich
hamiltonian quadratic in mean curvature; it interacts by contact with the
substrate, with an interaction energy proportional to the area of contact. We
identify the constraints on the geometry at the boundary of the shared surface.
The result is interpreted in terms of the balance of the force normal to this
boundary. No assumptions are made either on the symmetry of the vesicle or on
that of the substrate. The strong bonding limit as well as the effect of
curvature asymmetry on the boundary are discussed.Comment: 7 pages, some major changes in sections III and IV, version published
in Physical Review
Conformally invariant bending energy for hypersurfaces
The most general conformally invariant bending energy of a closed
four-dimensional surface, polynomial in the extrinsic curvature and its
derivatives, is constructed. This invariance manifests itself as a set of
constraints on the corresponding stress tensor. If the topology is fixed, there
are three independent polynomial invariants: two of these are the
straighforward quartic analogues of the quadratic Willmore energy for a
two-dimensional surface; one is intrinsic (the Weyl invariant), the other
extrinsic; the third invariant involves a sum of a quadratic in gradients of
the extrinsic curvature -- which is not itself invariant -- and a quartic in
the curvature. The four-dimensional energy quadratic in extrinsic curvature
plays a central role in this construction.Comment: 16 page
Porous silicon formation and electropolishing
Electrochemical etching of silicon in hydrofluoride containing electrolytes
leads to pore formation for low and to electropolishing for high applied
current. The transition between pore formation and polishing is accompanied by
a change of the valence of the electrochemical dissolution reaction. The local
etching rate at the interface between the semiconductor and the electrolyte is
determined by the local current density. We model the transport of reactants
and reaction products and thus the current density in both, the semiconductor
and the electrolyte. Basic features of the chemical reaction at the interface
are summarized in law of mass action type boundary conditions for the transport
equations at the interface. We investigate the linear stability of a planar and
flat interface. Upon increasing the current density the stability flips either
through a change of the valence of the dissolution reaction or by a nonlinear
boundary conditions at the interface.Comment: 18 pages, 8 figure
Ab-initio Molecular Dynamics study of electronic and optical properties of silicon quantum wires: Orientational Effects
We analyze the influence of spatial orientation on the optical response of
hydrogenated silicon quantum wires. The results are relevant for the
interpretation of the optical properties of light emitting porous silicon. We
study (111)-oriented wires and compare the present results with those
previously obtained within the same theoretical framework for (001)-oriented
wires [F. Buda {\it et al.}, {\it Phys. Rev. Lett.} {\bf 69}, 1272, (1992)]. In
analogy with the (001)-oriented wires and at variance with crystalline bulk
silicon, we find that the (111)-oriented wires exhibit a direct gap at whose value is largely enhanced with respect to that found in bulk
silicon because of quantum confinement effects. The imaginary part of the
dielectric function, for the external field polarized in the direction of the
axis of the wires, shows features that, while being qualitatively similar to
those observed for the (001) wires, are not present in the bulk. The main
conclusion which emerges from the present study is that, if wires a few
nanometers large are present in the porous material, they are
optically active independently of their specific orientation.Comment: 14 pages (plus 6 figures), Revte
- …