5,857 research outputs found

    "Are Black Holes in Brans-Dicke Theory precisely the same as in General Relativity?"

    Full text link
    We study a three-parameters family of solutions of the Brans-Dicke field equations. They are static and spherically symmetric. We find the range of parameters for which this solution represents a black hole different from the Schwarzschild one. We find a subfamily of solutions which agrees with experiments and observations in the solar system. We discuss some astrophysical applications and the consequences on the "no hair" theorems for black holes.Comment: 13pages, Plain Te

    Making use of geometrical invariants in black hole collisions

    Full text link
    We consider curvature invariants in the context of black hole collision simulations. In particular, we propose a simple and elegant combination of the Weyl invariants I and J, the {\sl speciality index} S{\cal S}. In the context of black hole perturbations S\cal S provides a measure of the size of the distortions from an ideal Kerr black hole spacetime. Explicit calculations in well-known examples of axisymmetric black hole collisions demonstrate that this quantity may serve as a useful tool for predicting in which cases perturbative dynamics provide an accurate estimate of the radiation waveform and energy. This makes S{\cal S} particularly suited to studying the transition from nonlinear to linear dynamics and for invariant interpretation of numerical results.Comment: 4 pages, 3 eps figures, Revte

    Spin-orbit interactions in black-hole binaries

    Get PDF
    We perform numerical simulations of black-hole binaries to study the exchange of spin and orbital angular momentum during the last, highly nonlinear, stages of the coalescence process. To calculate the transfer of angular momentum from orbital to spin, we start with two quasi-circular configurations, one with initially non-spinning black holes, the other with corotating black holes. In both cases the binaries complete almost two orbits before merging. We find that, during these last orbits, the specific spin (a/m) of each horizon increases by only 0.012 for the initially non-spinning configuration, and by only 0.006 for the initially corotating configuration. By contrast, the corotation value for the specific spin should increase from 0.1 at the initial proper separation of 10M to 0.33 when the proper separation is 5M. Thus the spin-orbit coupling is far too weak to tidally lock the binary to a corotating state during the late-inspiral phase. We also study the converse transfer from spin into orbital motion. In this case, we start the simulations with parallel, highly-spinning non-boosted black holes. As the collision proceeds, the system acquires a non-head-on orbital motion, due to spin-orbit coupling, that leads to the radiation of angular momentum. We are able to accurately measure the energy and angular momentum losses and model their dependence on the initial spins.Comment: This version corrects two typos in Eq (4) and Table I present in the published versio

    Perturbative effects of spinning black holes with applications to recoil velocities

    Full text link
    Recently, we proposed an enhancement of the Regge-Wheeler-Zerilli formalism for first-order perturbations about a Schwarzschild background that includes first-order corrections due to the background black-hole spin. Using this formalism, we investigate gravitational wave recoil effects from a spinning black-hole binary system analytically. This allows us to better understand the origin of the large recoils observed in full numerical simulation of spinning black hole binaries.Comment: Proceedings of Theory Meets Data Analysis at Comparable and Extreme Mass Ratios (NRDA/Capra 2010), Perimeter Institute, June 2010 - 12 page

    The last orbit of binary black holes

    Full text link
    We have used our new technique for fully numerical evolutions of orbiting black-hole binaries without excision to model the last orbit and merger of an equal-mass black-hole system. We track the trajectories of the individual apparent horizons and find that the binary completed approximately one and a third orbits before forming a common horizon. Upon calculating the complete gravitational radiation waveform, horizon mass, and spin, we find that the binary radiated 3.2% of its mass and 24% of its angular momentum. The early part of the waveform, after a relatively short initial burst of spurious radiation, is oscillatory with increasing amplitude and frequency, as expected from orbital motion. The waveform then transitions to a typical `plunge' waveform; i.e. a rapid rise in amplitude followed by quasinormal ringing. The plunge part of the waveform is remarkably similar to the waveform from the previously studied `ISCO' configuration. We anticipate that the plunge waveform, when starting from quasicircular orbits, has a generic shape that is essentially independent of the initial separation of the binary.Comment: 5 pages, 5 figures, revtex

    A perturbative solution for gravitational waves in quadratic gravity

    Full text link
    We find a gravitational wave solution to the linearized version of quadratic gravity by adding successive perturbations to the Einstein's linearized field equations. We show that only the Ricci squared quadratic invariant contributes to give a different solution of those found in Einstein's general relativity. The perturbative solution is written as a power series in the β\beta parameter, the coefficient of the Ricci squared term in the quadratic gravitational action. We also show that, for monochromatic waves of a given angular frequency ω\omega, the perturbative solution can be summed out to give an exact solution to linearized version of quadratic gravity, for 0<ω<c/∣β∣1/20<\omega<c/\mid\beta\mid^{1/2}. This result may lead to implications to the predictions for gravitational wave backgrounds of cosmological origin.Comment: 9 pages, to appear in CQ

    Approximate black hole binary spacetime via asymptotic matching

    Get PDF
    We construct a fully analytic, general relativistic, nonspinning black hole binary spacetime that approximately solves the vacuum Einstein equations everywhere in space and time for black holes sufficiently well separated. The metric is constructed by asymptotically matching perturbed Schwarzschild metrics near each black hole to a two-body post-Newtonian metric far from them, and a two-body post-Minkowskian metric farther still. Asymptotic matching is done without linearizing about a particular time slice, and thus it is valid dynamically and for all times, provided the binary is sufficiently well separated. This approximate global metric can be used for long dynamical evolutions of relativistic magnetohydrodynamical, circumbinary disks around inspiraling supermassive black holes to study a variety of phenomena.Comment: 17 pages, 8 figures, 1 table. Appendix added to match published versio
    • …
    corecore