317 research outputs found

    A Simple Explanation for Taxon Abundance Patterns

    Get PDF
    For taxonomic levels higher than species, the abundance distributions of number of subtaxa per taxon tend to approximate power laws, but often show strong deviationns from such a law. Previously, these deviations were attributed to finite-time effects in a continuous time branching process at the generic level. Instead, we describe here a simple discrete branching process which generates the observed distributions and find that the distribution's deviation from power-law form is not caused by disequilibration, but rather that it is time-independent and determined by the evolutionary properties of the taxa of interest. Our model predicts-with no free parameters-the rank-frequency distribution of number of families in fossil marine animal orders obtained from the fossil record. We find that near power-law distributions are statistically almost inevitable for taxa higher than species. The branching model also sheds light on species abundance patterns, as well as on links between evolutionary processes, self-organized criticality and fractals.Comment: 10 pages, 4 Fig

    Co-constructing a new framework for evaluating social innovation in marginalized rural areas

    Get PDF
    The EU funded H2020 project \u2018Social Innovation in Marginalised Rural Areas\u2019 (SIMRA; www.simra-h2020.eu) has the overall objective of advancing the state-of-the-art in social innovation. This paper outlines the process for co- developing an evaluation framework with stakeholders, drawn from across Europe and the Mediterranean area, in the fields of agriculture, forestry and rural development. Preliminary results show the importance of integrating process and outcome-oriented evaluations, and implementing participatory approaches in evaluation practice. They also raise critical issues related to the comparability of primary data in diverse regional contexts and highlight the need for mixed methods approaches in evaluation

    Critical and Near-Critical Branching Processes

    Get PDF
    Scale-free dynamics in physical and biological systems can arise from a variety of causes. Here, we explore a branching process which leads to such dynamics. We find conditions for the appearance of power laws and study quantitatively what happens to these power laws when such conditions are violated. From a branching process model, we predict the behavior of two systems which seem to exhibit near scale-free behavior--rank-frequency distributions of number of subtaxa in biology, and abundance distributions of genotypes in an artificial life system. In the light of these, we discuss distributions of avalanche sizes in the Bak-Tang-Wiesenfeld sandpile model.Comment: 9 pages LaTex with 10 PS figures. v.1 of this paper contains results from non-critical sandpile simulations that were excised from the published versio

    Identifying Important Observations Using Cross Validation and Computationally Frugal Sensitivity Analysis Methods

    Get PDF
    Sensitivity analysis methods are used to identify measurements most likely to provide important information for model development and predictions. Methods range from computationally demanding Monte Carlo and cross-validation methods that require thousands to millions of model runs, to very computationally efficient linear methods able to account for interrelations between parameters that involve tens to hundreds of runs. Some argue that because linear methods neglect the effects of model nonlinearity, they are not worth considering. However, when faced with computationally demanding models needed to simulate, for example, climate change, the chance of obtaining insights with so few model runs is tempting. This work compares results for a nonlinear groundwater model using computationally demanding cross-validation and computationally efficient local sensitivity analysis methods

    Identifying Important Observations Using Cross Validation and Computationally Frugal Sensitivity Analysis Methods

    Get PDF
    AbstractSensitivity analysis methods are used to identify measurements most likely to provide important information for model development and predictions. Methods range from computationally demanding Monte Carlo and cross-validation methods that require thousands to millions of model runs, to very computationally efficient linear methods able to account for interrelations between parameters that involve tens to hundreds of runs. Some argue that because linear methods neglect the effects of model nonlinearity, they are not worth considering. However, when faced with computationally demanding models needed to simulate, for example, climate change, the chance of obtaining insights with so few model runs is tempting. This work compares results for a nonlinear groundwater model using computationally demanding cross-validation and computationally efficient local sensitivity analysis methods

    Mal de Debarquement Syndrome: A Matter of Loops?

    Get PDF
    Introduction: Mal de Debarquement Syndrome (MdDS) is a poorly understood neurological disorder affecting mostly perimenopausal women. MdDS has been hypothesized to be a maladaptation of the vestibulo-ocular reflex, a neuroplasticity disorder, and a consequence of neurochemical imbalances and hormonal changes. Our hypothesis considers elements from these theories, but presents a novel approach based on the analysis of functional loops, according to Systems and Control Theory. Hypothesis: MdDS is characterized by a persistent sensation of self-motion, usually occurring after sea travels. We assume the existence of a neuronal mechanism acting as an oscillator, i.e., an adaptive internal model, that may be able to cancel a sinusoidal disturbance of posture experienced aboard, due to wave motion. Thereafter, we identify this mechanism as a multi-loop neural network that spans between vestibular nuclei and the flocculonodular lobe of the cerebellum. We demonstrate that this loop system has a tendency to oscillate, which increases with increasing strength of neuronal connections. Therefore, we hypothesize that synaptic plasticity, specifically long-term potentiation, may play a role in making these oscillations poorly damped. Finally, we assume that the neuromodulator Calcitonin Gene-Related Peptide, which is modulated in perimenopausal women, exacerbates this process thus rendering the transition irreversible and consequently leading to MdDS. Conclusion and Validation: The concept of an oscillator that becomes noxiously permanent can be used as a model for MdDS, given a high correlation between patients with MdDS and sea travels involving undulating passive motion, and an alleviation of symptoms when patients are re-exposed to similar passive motion. The mechanism could be further investigated utilizing posturography tests to evaluate if subjective perception of motion matches with objective postural instability. Neurochemical imbalances that would render individuals more susceptible to developing MdDS could be investigated through hormonal profile screening. Alterations in the connections between vestibular nuclei and cerebellum, notably GABAergic fibers, could be explored by neuroimaging techniques as well as transcranial magnetic stimulation. If our hypothesis were tested and verified, optimal targets for MdDS treatment could be found within both the neural networks and biochemical factors that are deemed to play a fundamental role in loop functioning and synaptic plasticity

    Comparison of short- and long-term effectiveness of ixekizumab and secukinumab in real-world practice

    Get PDF
    Background: Although secukinumab and ixekizumab both act by inhibiting IL-17A, some scientific evidence suggests that there are differences in efficacy between the two agents. Objective: The aim of this study was to compare the short- and long-term effectiveness of ixekizumab and secukinumab in clinical practice. Methods: A retrospective study was conducted on a cohort of 245 psoriatic patients receiving secukinumab or ixekizumab during the period from September 2016 to December 2019. The proportion of patients achieving PASI75, PASI90, and PASI100 at weeks 12 and 24 was calculated. We recorded the 12- and 24-month drug survival as a measure to assess long-term effectiveness. Results: A higher proportion of patients in the secukinumab group achieved PASI75, 90, and 100 at 12 weeks. The Kaplan-Meier survival curve for any reason of discontinuation showed no differences between the two groups. Instead, the multivariate analysis for ineffectiveness, adjusted for potential confounders, showed a lower drug survival rate in the secukinumab group, with an adjusted HR of 2.57 (95% CI 1.05–6.28, p 0.038). Conclusion: This real-life study demonstrated that ixekizumab and secukinumab are both highly effective in short- and long-term treatment of psoriasis, even though few differences exist concerning speed of action and long-term effectiveness

    Fractal geometry of spin-glass models

    Full text link
    Stability and diversity are two key properties that living entities share with spin glasses, where they are manifested through the breaking of the phase space into many valleys or local minima connected by saddle points. The topology of the phase space can be conveniently condensed into a tree structure, akin to the biological phylogenetic trees, whose tips are the local minima and internal nodes are the lowest-energy saddles connecting those minima. For the infinite-range Ising spin glass with p-spin interactions, we show that the average size-frequency distribution of saddles obeys a power law ∌w−D \sim w^{-D}, where w=w(s) is the number of minima that can be connected through saddle s, and D is the fractal dimension of the phase space

    More green and less blue water in the Alps during warmer summers

    Get PDF
    Climate change can reduce surface-water supply by enhancing evapotranspiration in forested mountains, especially during heatwaves. We investigate this ‘drought paradox’ for the European Alps using a 1,212-station database and hyper-resolution ecohydrological simulations to quantify blue (runoff) and green (evapotranspiration) water fluxes. During the 2003 heatwave, evapotranspiration in large areas over the Alps was above average despite low precipitation, amplifying the runoff deficit by 32% in the most runoff-productive areas (1,300–3,000 m above sea level). A 3 °C air temperature increase could enhance annual evapotranspiration by up to 100 mm (45 mm on average), which would reduce annual runoff at a rate similar to a 3% precipitation decrease. This suggests that green-water feedbacks—which are often poorly represented in large-scale model simulations—pose an additional threat to water resources, especially in dry summers. Despite uncertainty in the validation of the hyper-resolution ecohydrological modelling with observations, this approach permits more realistic predictions of mountain region water availability
    • 

    corecore