14 research outputs found

    Immune phenotypes and target antigens of clonally expanded bone marrow T cells in treatment-naïve multiple myeloma

    Get PDF
    Multiple myeloma is a hematologic malignancy of monoclonal plasma cells that accumulate in the bone marrow. Despite their clinical and pathophysiological relevance, the roles of bone marrow infiltrating T cells in treatment-naïve patients are incompletely understood. We investigated whether clonally expanded T cells i) were detectable in multiple myeloma bone marrow, ii) showed characteristic immune phenotypes, and iii) whether dominant clones recognized antigens selectively presented on multiple myeloma cells. Single-cell index sorting and T-cell receptor (TCR)αβ sequencing of bone marrow T cells from 13 treatment-naïve patients showed dominant clonal expansion within CD8+ cytolytic effector compartments, and only a minority of expanded T-cell clones expressed the classical immune checkpoint molecules PD 1, CTLA 4, or TIM 3. To identify their molecular targets, TCRs of 68 dominant bone marrow clones from five selected patients were re-expressed and incubated with multiple myeloma and non multiple myeloma cells from corresponding patients. Only one out of 68 TCRs recognized antigen presented on multiple myeloma cells. This TCR was HLA-C-restricted, self-peptide-specific, and could be activated by multiple myeloma cells of multiple patients. The remaining dominant T-cell clones did not recognize multiple myeloma cells and were, in part, specific for antigens associated with chronic viral infections. In conclusion, we showed that dominant bone marrow T-cell clones in treatment naïve patients rarely recognize antigens presented on multiple myeloma cells and exhibit low expression of classical immune checkpoint molecules. Our data provide experimental context for experiences from clinical immune checkpoint inhibition trials and will inform future T cell-dependent therapeutic strategies

    Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy

    Get PDF
    Detailed knowledge of the molecular biology of SARS-CoV-2 infection is crucial for understanding of viral replication, host responses and disease progression. Here, we report gene expression profiles of three SARS-CoV and SARS-CoV-2 infected human cell lines. SARS-CoV-2 elicited an approximately two-fold higher stimulation of the innate immune response compared to SARS-CoV in the human epithelial cell line Calu-3, including induction of miRNA-155. Single-cell RNA sequencing of infected cells showed that genes induced by virus infections were broadly upregulated, whereas interferon beta/lambda genes an pro-inflammatory cytokines such as IL-6 were expressed only in small subsets of infected cells. Temporal analysis suggested that transcriptional activities of interferon regulatory factors precede those of nuclear factor κB. Lastly, we identified heat shock protein 90 (HSP90) as a protein relevant for the infection. Inhibition of the HSP90 activity resulted in a reduction of viral replication and pro-inflammatory cytokine expression in primary human airway epithelial cells

    Stress modulation as a means to improve yeasts for lignocellulose bioconversion

    Get PDF
    The second-generation (2G) fermentation environment for lignocellulose conversion presents unique challenges to the fermentative organism that do not necessarily exist in other industrial fermentations. While extreme osmotic, heat, and nutrient starvation stresses are observed in sugar- and starch-based fermentation environments, additional pre-treatment-derived inhibitor stress, potentially exacerbated by stresses such as pH and product tolerance, exist in the 2G environment. Furthermore, in a consolidated bioprocessing (CBP) context, the organism is also challenged to secrete enzymes that may themselves lead to unfolded protein response and other stresses. This review will discuss responses of the yeast Saccharomyces cerevisiae to 2G-specific stresses and stress modulation strategies that can be followed to improve yeasts for this application. We also explore published –omics data and discuss relevant rational engineering, reverse engineering, and adaptation strategies, with the view of identifying genes or alleles that will make positive contributions to the overall robustness of 2G industrial strains

    mRNAs, proteins and the emerging principles of gene expression control

    No full text
    Gene expression involves transcription, translation and the turnover of mRNAs and proteins. The degree to which protein abundances scale with mRNA levels and the implications in cases where this dependency breaks down remain an intensely debated topic. Here we review recent mRNA-protein correlation studies in the light of the quantitative parameters of the gene expression pathway, contextual confounders and buffering mechanisms. Although protein and mRNA levels typically show reasonable correlation, we describe how transcriptomics and proteomics provide useful non-redundant readouts. Integrating both types of data can reveal exciting biology and is an essential step in refining our understanding of the principles of gene expression control

    Cell-to-cell proteome variability: life in a cycle

    No full text

    Transformation, meaning-making and identity creation through folklore tourism: the case of the Robin Hood Festival

    No full text
    Folklore tourism is often regarded as a subset of heritage tourism, although it has received less attention than comparable heritage events based on documented historic events such as civil war re-enactments and living history sites. Although the ‘theming’ of landscapes and the journeying to places based on their literary association enjoys a long tradition, this paper focuses on the relationship between tourism and folklorism. It explores how folklore events appropriate contemporary and social interpretations of stories to entertain whilst also outlining how legendary historical personalities can play a role in generating tourism. In 2013, a constructivist methodology was employed using 20 in-depth interviews and participant observations to generate qualitative data at the Robin Hood Festival in Nottinghamshire, UK. Numerous themes emerged after coding including the way folklore events blend historic fact and fiction, the power of the imagination to create spaces, and the importance of natural settings and spaces to transform people and places. However, three dominant themes emerged which are specifically presented in this paper, these are: a) a sense of freedom and escape felt by participants, b) camaraderie and inter-personal social authenticity, and c) the transformation of self and creation of alternative (additional) social identities

    TPX2/Aurora kinase A signaling as a potential therapeutic target in genomically unstable cancer cells

    Get PDF
    Genomic instability is a hallmark feature of cancer cells, and can be caused by defective DNA repair, for instance due to inactivation of BRCA2. Paradoxically, loss of Brca2 in mice results in embryonic lethality, whereas cancer cells can tolerate BRCA2 loss. This holds true for multiple DNA repair genes, and suggests that cancer cells are molecularly "rewired" to cope with defective DNA repair and the resulting high levels of genomic instability. In this study, we aim to identify genes that genomically unstable cancer cells rely on for their survival. Using functional genomic mRNA (FGmRNA) profiling, 16,172 cancer samples were previously ranked based on their degree of genomic instability. We analyzed the top 250 genes that showed a positive correlation between FGmRNA levels and the degree of genomic instability, in a co-functionality network. Within this co-functionality network, a strong cluster of 11 cell cycle-related genes was identified, including TPX2. We then assessed the dependency on these 11 genes in the context of survival of genomically unstable cancer cells, induced by BRCA2 inactivation. Depletion of TPX2 or its associated kinase Aurora-A preferentially reduced cell viability in a panel of BRCA2-deficient cancer cells. In line with these findings, BRCA2-depleted and BRCA2-mutant human cell lines, or tumor cell lines derived from Brca2(-/-); p53(-/-) mice showed increased sensitivity to the Aurora-A kinase inhibitor alisertib, with delayed mitotic progression and frequent mitotic failure. Our findings reveal that BRCA2-deficient cancer cells show enhanced sensitivity to inactivation of TPX2 or its partner Aurora-A, which points at an actionable dependency of genomically unstable cancers
    corecore