110 research outputs found

    Ehrenfest's Principle and the Problem of Time in Quantum Gravity

    Get PDF
    We elaborate on a proposal made by Greensite and others to solve the problem of time in quantum gravity. The proposal states that a viable concept of time and a sensible inner product can be found from the demand for the Ehrenfest equations to hold in quantum gravity. We derive and discuss in detail exact consistency conditions from both Ehrenfest equations as well as from the semiclassical approximation. We also discuss consistency conditions arising from the full field theory. We find that only a very restricted class of solutions to the Wheeler-DeWitt equation fulfills all consistency conditions. We conclude that therefore this proposal must either be abandoned as a means to solve the problem of time or, alternatively, be used as an additional boundary condition to select physical solutions from the Wheeler-DeWitt equation.Comment: 20 pages, LATE

    Semiclassical quantum states for black holes

    Get PDF
    I discuss the semiclassical approximation for the Wheeler-DeWitt equation when applied to the CGHS model and spherically symmetric gravity. Special attention is devoted to the issues of Hawking radiation, decoherence of semiclassical states, and black hole entropy.Comment: 8 pages, LATEX, contribution for the Second Conference on Constrained Dynamics and Quantum Gravity, Santa Margherita, Italy, September 199

    Canonical Quantization of Spherically Symmetric Dust Collapse

    Full text link
    Quantum gravity effects are likely to play a crucial role in determining the outcome of gravitational collapse during its final stages. In this contribution we will outline a canonical quantization of the LeMaitre-Tolman-Bondi models, which describe the collapse of spherical, inhomogeneous, non-rotating dust. Although there are many models of gravitational collapse, this particular class of models stands out for its simplicity and the fact that both black holes and naked singularity end states may be realized on the classical level, depending on the initial conditions. We will obtain the appropriate Wheeler-DeWitt equation and then solve it exactly, after regularization on a spatial lattice. The solutions describe Hawking radiation and provide an elegant microcanonical description of black hole entropy, but they raise other questions, most importantly concerning the nature of gravity's fundamental degrees of freedom.Comment: 19 pages no figures. Contribution to a festschrift in honor of Joshua N. Goldber

    Quantum general relativity and Hawking radiation

    Get PDF
    In a previous paper we have set up the Wheeler-DeWitt equation which describes the quantum general relativistic collapse of a spherical dust cloud. In the present paper we specialize this equation to the case of matter perturbations around a black hole, and show that in the WKB approximation, the wave-functional describes an eternal black hole in equilibrium with a thermal bath at Hawking temperature.Comment: 13 pages, minor revisions in: (i) para 5 of Introduction, (ii) para following Eqn. (10). Revised version to appear in Phys. Rev.

    Microcanonical statistics of black holes and bootstrap condition

    Full text link
    The microcanonical statistics of the Schwarzschild black holes as well as the Reissner-Nordstro¨\sf \ddot{o}m black holes are analyzed. In both cases we set up the inequalities in the microcanonical density of states. These are then used to show that the most probable configuration in the gases of black holes is that one black hole acquires all of the mass and all of the charge at high energy limit. Thus the black holes obey the statistical bootstrap condition and, in contrast to the other investigation, we see that U(1) charge does not break the bootstrap property.Comment: 16 pages. late

    A Quantum Mechanical Model of the Reissner-Nordstrom Black Hole

    Get PDF
    We consider a Hamiltonian quantum theory of spherically symmetric, asymptotically flat electrovacuum spacetimes. The physical phase space of such spacetimes is spanned by the mass and the charge parameters MM and QQ of the Reissner-Nordstr\"{o}m black hole, together with the corresponding canonical momenta. In this four-dimensional phase space, we perform a canonical transformation such that the resulting configuration variables describe the dynamical properties of Reissner-Nordstr\"{o}m black holes in a natural manner. The classical Hamiltonian written in terms of these variables and their conjugate momenta is replaced by the corresponding self-adjoint Hamiltonian operator, and an eigenvalue equation for the ADM mass of the hole, from the point of view of a distant observer at rest, is obtained. Our eigenvalue equation implies that the ADM mass and the electric charge spectra of the hole are discrete, and the mass spectrum is bounded below. Moreover, the spectrum of the quantity M2Q2M^2-Q^2 is strictly positive when an appropriate self-adjoint extension is chosen. The WKB analysis yields the result that the large eigenvalues of the quantity M2Q2\sqrt{M^2-Q^2} are of the form 2n\sqrt{2n}, where nn is an integer. It turns out that this result is closely related to Bekenstein's proposal on the discrete horizon area spectrum of black holes.Comment: 37 pages, Plain TeX, no figure

    Semiclassical Black Hole States and Entropy

    Get PDF
    We discuss semiclassical states in quantum gravity corresponding to Schwarzschild as well as Reissner Nordstr\"om black holes. We show that reduced quantisation of these models is equivalent to Wheeler-DeWitt quantisation with a particular factor ordering. We then demonstrate how the entropy of black holes can be consistently calculated from these states. While this leads to the Bekenstein-Hawking entropy in the Schwarzschild and non-extreme Reissner-Nordstr\"om cases, the entropy for the extreme Reissner-Nordstr\"om case turns out to be zero.Comment: Revtex, 15 pages, some clarifying comments and additional references included, to appear in Phys. Rev.

    Topology Change in Canonical Quantum Cosmology

    Full text link
    We develop the canonical quantization of a midisuperspace model which contains, as a subspace, a minisuperspace constituted of a Friedman-Lema\^{\i}tre-Robertson-Walker Universe filled with homogeneous scalar and dust fields, where the sign of the intrinsic curvature of the spacelike hypersurfaces of homogeneity is not specified, allowing the study of topology change in these hypersurfaces. We solve the Wheeler-DeWitt equation of the midisuperspace model restricted to this minisuperspace subspace in the semi-classical approximation. Adopting the conditional probability interpretation, we find that some of the solutions present change of topology of the homogeneous hypersurfaces. However, this result depends crucially on the interpretation we adopt: using the usual probabilistic interpretation, we find selection rules which forbid some of these topology changes.Comment: 23 pages, LaTex file. We added in the conclusion some comments about path integral formalism and corrected litle misprinting

    Must Quantum Spacetimes Be Euclidean?

    Full text link
    The Bohm-de Broglie interpretation of quantum mechanics is applied to canonical quantum cosmology. It is shown that, irrespective of any regularization or choice of factor ordering of the Wheeler-DeWitt equation, the unique relevant quantum effect which does not break spacetime is the change of its signature from lorentzian to euclidean. The other quantum effects are either trivial or break the four-geometry of spacetime. A Bohm-de Broglie picture of a quantum geometrodynamics is constructed, which allows the investigation of these latter structures. For instance, it is shown that any real solution of the Wheeler-De Witt equation yields a generate four-geometry compatible with the strong gravity limit of General Relativity and the Carroll group. Due to the more detailed description of quantum geometrodynamics given by the Bohm-de Broglie interpretation, some new boundary conditions on solutions of the Wheeler-DeWitt equation must be imposed in order to preserve consistency of this finer view.Comment: 42 pages LaTeX, last version with minor corrections, being the most importants on pages 0, 6, 11, 21, 23, and 30 . The new title does not change our conclusion

    The Bohm Interpretation of Quantum Cosmology

    Full text link
    I make a review on the aplications of the Bohm-De Broglie interpretation of quantum mechanics to quantum cosmology. In the framework of minisuperspaces models, I show how quantum cosmological effects in Bohm's view can avoid the initial singularity, isotropize the Universe, and even be a cause for the present observed acceleration of the Universe. In the general case, we enumerate the possible structures of quantum space and time.Comment: 28 pages, 1 figure, contribution to the James Cushing festschrift to appear in Foundations of Physic
    corecore