88 research outputs found

    Switchable Gene Expression in Escherichia coli Using a Miniaturized Photobioreactor

    Get PDF
    We present a light-switchable gene expression system for both inducible and switchable control of gene expression at a single cell level in Escherichia coli using a previously constructed light-sensing system. The lambda cl repressor gene with an LVA degradation tag was expressed under the control of the ompC promoter on the chromosome. The green fluorescent protein (GFP) gene fused to a lambda repressor-repressible promoter was used as a reporter. This light-switchable system allows rapid and reversible induction or repression of expression of the target gene at any desired time. This system also ensures homogenous expression across the entire cell population. We also report the design of a miniaturized photobioreactor to be used in combination with the light-switchable gene expression system. The miniaturized photobioreactor helps to reduce unintended induction of the light receptor due to environmental disturbances and allows precise control over the duration of induction. This system would be a good tool for switchable, homogenous, strong, and highly regulatable expression of target genes over a wide range of induction times. Hence, it could be applied to study gene function, optimize metabolic pathways, and control biological systems both spatially and temporally.open0

    A facile Fmoc solid phase synthesis strategy to access pimerization-prone biosynthetic intermediates of glycopeptide antibiotics

    No full text
    A rapid protocol based on Fmoc-chemistry for the solid phase peptide synthesis of vancomycin- and teicoplanin-type peptides is described. Epimerization of highly racemization-prone arlyglycine derivatives is suppressed through optimized Fmoc-deprotection and coupling conditions. Starting from easily accessible Fmoc-protected amino acids, this strategy enables the enantioselective synthesis of peptides corresponding to intermediates found in vancomycin and teicoplanin biosynthesis with excellent purity and in high yields (38%–71%)

    Biochemical and structural characterisation of the second oxidative crosslinking step during the biosynthesis of the glycopeptide antibiotic A47934

    No full text
    The chemical complexity and biological activity of the glycopeptide antibiotics (GPAs) stems from their unique crosslinked structure, which is generated by the actions of cytochrome P450 (Oxy) enzymes that affect the crosslinking of aromatic side chains of amino acid residues contained within the GPA heptapeptide precursor. Given the crucial role peptide cyclisation plays in GPA activity, the characterisation of this process is of great importance in understanding the biosynthesis of these important antibiotics. Here, we report the cyclisation activity and crystal structure of StaF, the D-O-E ring forming Oxy enzyme from A47934 biosynthesis. Our results show that the specificity of StaF is reduced when compared to Oxy enzymes catalysing C-O-D ring formation and that this activity relies on interactions with the non-ribosomal peptide synthetase via the X-domain. Despite the interaction of StaF with the A47934 X-domain being weaker than for the preceding Oxy enzyme StaH, StaF retains higher levels of in vitro activity: we postulate that this is due to the ability of the StaF/X-domain complex to allow substrate reorganisation after initial complex formation has occurred. These results highlight the importance of testing different peptide/protein carrier constructs for in vitro GPA cyclisation assays and show that different Oxy homologues can display significantly different catalytic propensities despite their overall similarities

    Efficient cosubstrate enzyme pairs for sequence-specific methyltransferase-directed photolabile caging of DNA

    No full text
    Supplemented with synthetic surrogates of their natural cosubstrate S-adenosyl-L-methione (AdoMet), methyltransferases represent a powerful toolbox for the functionalization of biomolecules. By employing novel cosubstrate derivatives in combination with protein engineering, we show that this chemo-enzymatic method can be used to introduce photolabile protecting groups into DNA even in the presence of AdoMet. This approach enables optochemical control of gene expression in a straight-forward manner and we have termed it reversible methyltransferase directed transfer of photoactivatable groups (re-mTAG)

    Biochemical and structural characterisation of the second oxidative crosslinking step during the biosynthesis of the glycopeptide antibiotic A47934

    No full text
    The chemical complexity and biological activity of the glycopeptide antibiotics (GPAs) stems from their unique crosslinked structure, which is generated by the actions of cytochrome P450 (Oxy) enzymes that affect the crosslinking of aromatic side chains of amino acid residues contained within the GPA heptapeptide precursor. Given the crucial role peptide cyclisation plays in GPA activity, the characterisation of this process is of great importance in understanding the biosynthesis of these important antibiotics. Here, we report the cyclisation activity and crystal structure of StaF, the D-O-E ring forming Oxy enzyme from A47934 biosynthesis. Our results show that the specificity of StaF is reduced when compared to Oxy enzymes catalysing C-O-D ring formation and that this activity relies on interactions with the non-ribosomal peptide synthetase via the X-domain. Despite the interaction of StaF with the A47934 X-domain being weaker than for the preceding Oxy enzyme StaH, StaF retains higher levels of in vitro activity: we postulate that this is due to the ability of the StaF/X-domain complex to allow substrate reorganisation after initial complex formation has occurred. These results highlight the importance of testing different peptide/protein carrier constructs for in vitro GPA cyclisation assays and show that different Oxy homologues can display significantly different catalytic propensities despite their overall similarities

    Oxidative transformations of amino acids and peptides catalysed by cytochromes P450

    No full text
    Cytochromes P450 (P450s) are a superfamily of oxidoreductases that display not only a high degree of substrate diversity across xenobiotic and secondary metabolism but also show flexibility in the oxidation chemistry that they catalyse. The oxidative transformation of amino acids and peptides by P450s represents an important collection of transformations for this enzyme class: these transformations are used in Nature to diversify the limited range of monomers available for ribosomal peptide production, as well as altering peptides to afford desired biological properties. This chapter will highlight current examples of P450-catalysed transformations of amino acids and peptides, organised by the nature of the oxidative transformation performed by the P450

    F-O-G ring formation in glycopeptide antibiotic biosynthesis is catalysed by OxyE

    No full text
    The glycopeptide antibiotics are peptide-based natural products with impressive antibiotic function that derives from their unique three-dimensional structure. Biosynthesis of the glycopeptide antibiotics centres of the combination of peptide synthesis, mediated by a non-ribosomal peptide synthetase, and the crosslinking of aromatic side chains of the peptide, mediated by the action of a cascade of Cytochrome P450s. Here, we report the first example of in vitro activity of OxyE, which catalyses the F-O-G ring formation reaction in teicoplanin biosynthesis. OxyE was found to only act after an initial C-O-D crosslink is installed by OxyB and to require an interaction with the unique NRPS domain from glycopeptide antibiotic - the X-domain - in order to display catalytic activity. We could demonstrate that OxyE displays limited stereoselectivity for the peptide, which mirrors the results from OxyB-catalysed turnover and is in sharp contrast to OxyA. Furthermore, we show that activity of a three-enzyme cascade (OxyB/OxyA/OxyE) in generating tricyclic glycopeptide antibiotic peptides depends upon the order of addition of the OxyA and OxyE enzymes to the reaction. This work demonstrates that complex enzymatic cascades from glycopeptide antibiotic biosynthesis can be reconstituted in vitro and provides new insights into the biosynthesis of these important antibiotics

    Facile synthetic access to glycopeptide antibiotic precursor peptides for the investigation of cytochrome P450 action in glycopeptide antibiotic biosynthesis

    No full text
    The glycopeptide antibiotics are an important class of complex, medically relevant peptide natural products. Given that the production of such compounds all stems from in vivo biosynthesis, understanding the mechanisms of the natural assembly system—consisting of a nonribosomal-peptide synthetase machinery (NRPS) and further modifying enzymes—is vital. In order to address the later steps of peptide biosynthesis, which are catalyzed by Cytochrome P450s that interact with the peptide-producing nonribosomal peptide synthetase, peptide substrates are required: these peptides must also be in a form that can be conjugated to carrier protein domains of the nonribosomal peptide synthetase machinery. Here, we describe a practical and effective route for the solid phase synthesis of glycopeptide antibiotic precursor peptides as their Coenzyme A (CoA) conjugates to allow enzymatic conjugation to carrier protein domains. This route utilizes Fmoc-chemistry suppressing epimerization of racemization-prone aryl glycine derivatives and affords high yields and excellent purities, requiring only a single step of simple solid phase extraction for chromatographic purification. With this, comprehensive investigations of interactions between various NRPS-bound substrates and Cytochrome P450s are enabled

    Investigating Cytochrome P450 specificity during glycopeptide antibiotic biosynthesis through a homologue hybridization approach

    No full text
    Cytochrome P450 enzymes perform an impressive range of oxidation reactions against diverse substrate scaffolds whilst generally maintaining a conserved tertiary structure and active site chemistry. Within secondary metabolism, P450 enzymes play widespread and important roles in performing crucial modifications of precursor molecules, with one example of the importance of such reactions being found in the biosynthesis of the glycopeptide antibiotics (GPAs). In GPA biosynthesis P450s, known as Oxy enzymes, are key players in the cyclization of the linear GPA peptide precursor, which is a process that is both essential for their antibiotic activity and is the source of the synthetic challenge of these important antibiotics. In this work, we developed chimeric P450 enzymes from GPA biosynthesis based on two homologues from different GPA biosynthesis pathways – vancomycin and teicoplanin – as an approach to explore the divergent catalytic behavior of the two parental homologues. We could generate, crystalize and explore the activity of new hybrid P450 enzymes from GPA biosynthesis and show that the unusual in vitro behavior of the vancomycin OxyB homologue does not stem from the major regions of the P450 active site, and that additional regions in and around the P450 active site must contribute to the unusual properties of this P450 enzyme. Our results further show that it is possible to successfully transplant entire regions of secondary structure between such P450s and retain P450 expression and activity, which opens the door to use such targeted approaches to generate and explore novel biosynthetic P450 enzymes

    Sequential in vitro cyclization by cytochrome P450 enzymes of glycopeptide antibiotic precursors bearing the X-domain from nonribosomal peptide biosynthesis

    No full text
    The biosynthesis of the glycopeptide antibiotics, which include vancomycin and teicoplanin, relies on the interplay between the peptide-producing non-ribosomal peptide synthetase (NRPS) and Cytochrome P450 enzymes (P450s) that catalyze side-chain crosslinking of the peptide. We demonstrate that sequential in vitro P450-catalyzed cyclization of peptide substrates is enabled by the use of an NRPS peptide carrier protein (PCP)-X di-domain as a P450 recruitment platform. This study reveals that whilst the precursor peptide sequence influences the installation of the second crosslink by the P450 OxyAtei , activity is not restricted to the native teicoplanin peptide. Initial peptide cyclization is possible with teicoplanin and vancomycin OxyB homologues, and the latter displays excellent activity with all substrate combinations tested. By using non-natural X-domain substrates, bicyclization of hexapeptides was also shown, which demonstrates the utility of this method for the cyclization of varied peptide substrates in vitro
    • …
    corecore