24 research outputs found

    Management of Suspected Cases of Feline Immunodeficiency Virus Infection in Eurasian Lynx (Lynx lynx) During an International Translocation Program.

    Get PDF
    The Eurasian lynx (Lynx lynx) population in Switzerland serves as a source for reintroductions in neighboring countries. In 2016-2017, three lynx from the same geographical area were found seropositive for feline immunodeficiency virus (FIV) in the framework of an international translocation program. This novel finding raised questions about the virus origin and pathogenicity to lynx, the emerging character of the infection, and the interpretation of serological results in other lynx caught for translocation. Archived serum samples from 84 lynx captured in 2001-2016 were retrospectively tested for FIV antibodies by Western blot. All archived samples were FIV-negative. The three seropositive lynx were monitored in quarantine enclosures prior to euthanasia and necropsy. They showed disease signs, pathological findings, and occurrence of co-infections reminding of those described in FIV-infected domestic cats. All attempts to isolate and characterize the virus failed but serological data and spatiotemporal proximity of the cases suggested emergence of a lentivirus with antigenic and pathogenic similarities to FIV in the Swiss lynx population. A decision scheme was developed to minimize potential health risks posed by FIV infection, both in the recipient and source lynx populations, considering conservation goals, animal welfare, and the limited action range resulting from local human conflicts. Development and implementation of a cautious decision scheme was particularly challenging because FIV pathogenic potential in lynx was unclear, negative FIV serological results obtained within the first weeks after infection are unpredictable, and neither euthanasia nor repatriation of multiple lynx was acceptable options. The proposed scheme distinguished between three scenarios: release at the capture site, translocation, or euthanasia. Until April 2021, none of the 40 lynx newly captured in Switzerland tested FIV-seropositive. Altogether, seropositivity to FIV was documented in none of 124 lynx tested at their first capture, but three of them seroconverted in 2016-2017. Diagnosis of FIV infection in the three seropositive lynx remains uncertain, but clinical observations and pathological findings confirmed that euthanasia was appropriate. Our experiences underline the necessity to include FIV in pathogen screenings of free-ranging European wild felids, the importance of lynx health monitoring, and the usefulness of health protocols in wildlife translocation

    Timing and synchrony of birth in Eurasian lynx across Europe

    Get PDF
    The ecology and evolution of reproductive timing and synchrony have been a topic of great interest in evolutionary ecology for decades. Originally motivated by questions related to behavioral and reproductive adaptation to environmental conditions, the topic has acquired new relevance in the face of climate change. However, there has been relatively little research on reproductive phenology in mammalian carnivores. The Eurasian lynx (Lynx lynx) occurs across the Eurasian continent, covering three of the four main climate regions of the world. Thus, their distribution includes a large variation in climatic conditions, making it an ideal species to explore reproductive phenology. Here, we used data on multiple reproductive events from 169 lynx females across Europe. Mean birth date was May 28 (April 23 to July 1), but was similar to 10 days later in northern Europe than in central and southern Europe. Birth dates were relatively synchronized across Europe, but more so in the north than in the south. Timing of birth was delayed by colder May temperatures. Severe and cold weather may affect neonatal survival via hypothermia and avoiding inclement weather early in the season may select against early births, especially at northern latitudes. Overall, only about half of the kittens born survived until onset of winter but whether kittens were born relatively late or early did not affect kitten survival. Lynx are strict seasonal breeders but still show a degree of flexibility to adapt the timing of birth to surrounding environmental conditions. We argue that lynx give birth later when exposed to colder spring temperatures and have more synchronized births when the window of favorable conditions for raising kittens is shorter. This suggests that lynx are well adapted to different environmental conditions, from dry and warm climates to alpine, boreal, and arctic climates. This variation in reproductive timing will be favorable in times of climate change, as organisms with high plasticity are more likely to adjust to new environmental conditions

    Patterns of variation in reproductive parameters in Eurasian lynx (Lynx lynx)

    Get PDF
    Detailed knowledge of the variation in demographic rates is central for our ability to understand the evolution of life history strategies and population dynamics, and to plan for the conservation of endangered species. We studied variation in reproductive output of 61 radio-collared Eurasian lynx females in four Scandinavian study sites spanning a total of 223 lynx-years. Specifically, we examined how the breeding proportion and litter size varied among study areas and age classes (2-year-old vs. >2-year-old females). In general, the breeding proportion varied between age classes and study sites, whereas we did not detect such variation in litter size. The lack of differences in litter sizes among age classes is at odds with most findings in large mammals, and we argue that this is because the level of prenatal investment is relatively low in felids compared to their substantial levels of postnatal care

    Integrating animal tracking datasets at a continental scale for mapping Eurasian lynx habitat

    Get PDF
    Aim: The increasing availability of animal tracking datasets collected across many sites provides new opportunities to move beyond local assessments to enable de-tailed and consistent habitat mapping at biogeographical scales. However, integrating wildlife datasets across large areas and study sites is challenging, as species' varying responses to different environmental contexts must be reconciled. Here, we compare approaches for large-area habitat mapping and assess available habitat for a recolo-nizing large carnivore, the Eurasian lynx (Lynx lynx).Location: Europe.Methods: We use a continental-scale animal tracking database (450 individuals from 14 study sites) to systematically assess modelling approaches, comparing (1) global strategies that pool all data for training versus building local, site-specific models and combining them, (2) different approaches for incorporating regional variation in habi-tat selection and (3) different modelling algorithms, testing nonlinear mixed effects models as well as machine-learning algorithms.Results: Testing models on training sites and simulating model transfers, global and local modelling strategies achieved overall similar predictive performance. Model performance was the highest using flexible machine-learning algorithms and when incorporating variation in habitat selection as a function of environmental variation. Our best-performing model used a weighted combination of local, site-specific habi-tat models. Our habitat maps identified large areas of suitable, but currently unoccu-pied lynx habitat, with many of the most suitable unoccupied areas located in regions that could foster connectivity between currently isolated populations.Main Conclusions: We demonstrate that global and local modelling strategies can achieve robust habitat models at the continental scale and that considering regional variation in habitat selection improves broad-scale habitat mapping. More generally, we highlight the promise of large wildlife tracking databases for large-area habitat mapping. Our maps provide the first high-resolution, yet continental assessment of lynx habitat across Europe, providing a consistent basis for conservation planning for restoring the species within its former range.publishedVersio

    A system for designating taxonomic certainty in mammals and other taxa

    No full text
    Taxonomy and systematics are fundamental to the success of conservation actions. A robust and accurate classification of living organisms is vital for understanding biodiversity, using limited resources wisely, prioritising conservation action, and for legal protection and regulation of trade. However, all too often current taxonomies are not based on the latest science and reflect traditional classifications developed in the nineteenth and early twentieth centuries. Understanding of the numbers of species has also changed dramatically with the widespread, but patchy, adoption of the phylogenetic species concept for many vertebrate groups. This has led to a situation where taxonomies are constantly changing in the light of new, mostly genetic, studies. Therefore, the need for a global list of accepted taxa has been recognised by the conservation community as a way of overcoming the uncertainties caused by this dynamic situation. Here, we propose a traffic-light system that may assist the efforts towards the global list of accepted taxa. The traffic-light system indicates the level of certainty in support of the recognition of each taxon, which mainly comprises morphological, genetic and biogeographical lines of evidence. So far, this approach has been adopted by the IUCN Cat Specialist Group to revise felid taxonomy, and the resulting classification has been adopted by the IUCN Red List of Threatened Species and CITES. We discuss the applicability of the approach to other species groups

    Expediency of photographs to study the distribution of wildcats in South-west Asia

    No full text
    By compiling a wildcat catalogue of georeferenced digital photographs from Southwest Asia, we investigated the plausibility of phenotypically identifying Felis silvestris caucasica (Caucasian wildcat), Felis lybica ornata (Asiatic wildcat) and Felis lybica lybica (African wildcat) through external phenotypic traits, in order to verify their known distribution, and identify any inconsistencies or gaps of knowledge. With this approach, we expect to move away from depending on wildcat distribution information being based primarily on expert opinion, and establish a more systematic approach to determine areas in need of further investigation, survey and monitoring with robust methods. We identified the Lesser Caucasus as an area containing possible hybrid individuals between these taxa. Further “ground truthing” may also be required to understand the distribution ranges of the Caucasian and Asiatic wildcats in the Caucasus and western Kazakhstan/southern Russia. We suspect their actual distributions may differ from the information currently published, with a possible range expansion in the north, as well as an overlap area in the Lesser Caucasus. The African wildcat was underrepresented in our image collection and therefore no firm conclusions could be formulated, emphasizing the need for further data. The wildcat catalogue is available as an online resource, and we emphasize the importance of such resource compilations, given the ever-increasing flood of digital imagery. We recommend the use of such tools for identifying areas in need of further “ground truthing” by means of robust genetic analyses. This plays an important role in addressing potential conservation concerns, such as the extent of hybridization between wildcat species, as well as with the domestic cat, the influence and extent of habitat loss, climate change, and species range shifts

    In situ feeding as a new management tool to conserve orphaned Eurasian lynx (lynx lynx)

    No full text
    High human-caused mortality due to wildlife-vehicle-collisions and illegal killing leads to frequent cases of orphaned Eurasian lynx juveniles. Under natural conditions, this would result in starvation of the young. To avoid this, wildlife managers conventionally rear animals in captivity and release them later. However, this measure is an undesirable outcome for species conservation, managers, and animals alike. Increased awareness of Eurasian lynx orphaned by human-caused mortality means managers must often intervene in endangered populations. In this study, we report for the first time a successful case of in situ feeding designed to avoid captivity of two orphaned Eurasian lynx. We exposed 13 roe deer and 7 red deer carcasses in the field to successfully support two orphans to the age of independence and confirm dispersal from the natal range. We present this management approach as a feasible and complimentary tool that can be considered in small or isolated large carnivore populations where every individual counts toward population viability
    corecore