8 research outputs found

    Ingestion of an ample amount of meat substitute based on a lysine-enriched,plant-based protein blend stimulates postprandial muscle proteinsynthesis to a similar extent as an isonitrogenous amount of chickenin healthy, young men

    Get PDF
    Plant-based proteins are considered to be less effective in their capacity to stimulate muscle protein synthesis when compared with animal-based protein sources, likely due to differences in amino acid contents. We compared the postprandial muscle protein synthetic response following the ingestion of a lysine-enriched plant-based protein product with an isonitrogenous amount of chicken. Twenty-four men (age 24 ± 5 years; BMI 22·9 ± 2·6 kg·m−2) participated in this parallel, double-blind, randomised controlled trial and consumed 40 g of protein as a lysine-enriched wheat and chickpea protein product (Plant, n 12) or chicken breast fillet (Chicken, n 12). Primed, continuous intravenous L-(ring-13C6)-phenylalanine infusions were applied while repeated blood and muscle samples were collected over a 5-h postprandial period to assess plasma amino acid responses, muscle protein synthesis rates and muscle anabolic signalling responses. Postprandial plasma leucine and essential amino acid concentrations were higher following Chicken (P < 0·001), while plasma lysine concentrations were higher throughout in Plant (P < 0·001). Total plasma amino acid concentrations did not differ between interventions (P = 0·181). Ingestion of both Plant and Chicken increased muscle protein synthesis rates from post-absorptive: 0·031 ± 0·011 and 0·031 ± 0·013 to postprandial: 0·046 ± 0·010 and 0·055 ± 0·015 % h−1, respectively (P-time < 0·001), with no differences between Plant and Chicken (time x treatment P = 0·068). Ingestion of 40 g of protein in the form of a lysine-enriched plant-based protein product increases muscle protein synthesis rates to a similar extent as an isonitrogenous amount of chicken in healthy, young men. Plant-based protein products sold as meat replacers may be as effective as animal-based protein sources to stimulate postprandial muscle protein synthesis rates in healthy, young individuals

    The maternal microbiome during pregnancy and allergic disease in the offspring

    Get PDF
    There is substantial epidemiological and mechanistic evidence that the increase in allergic disease and asthma in many parts of the world in part relates to changes in microbial exposures and diet acting via the composition and metabolic products of the intestinal microbiome. The majority of research in this field has focused on the gut microbiome during infancy, but it is increasingly clear that the maternal microbiome during pregnancy also has a key role in preventing an allergy-prone immune phenotype in the offspring. The mechanisms by which the maternal microbiome influences the developing fetal immune system include alignment between the maternal and infant regulatory immune status and transplacental passage of microbial metabolites and IgG. Interplay between microbial stimulatory factors such as lipopolysaccharides and regulatory factors such as short-chain fatty acids may also influence on fetal immune development. However, our understanding of these pathways is at an early stage and further mechanistic studies are needed. There are also no data from human studies relating the composition and metabolic activity of the maternal microbiome during pregnancy to the offspring's immune status at birth and risk of allergic disease. Improved knowledge of these pathways may inform novel strategies for tackling the increase in allergic disorders in the modern world

    Understanding collagen interactions and their targeted regulation by novel drugs

    No full text
    corecore