269 research outputs found

    Interplay between the electrical transport properties of GeMn thin films and Ge substrates

    Get PDF
    We present evidence that electrical transport studies of epitaxial p-type GeMn thin films fabricated on high resistivity Ge substrates are severely influenced by parallel conduction through the substrate, related to the large intrinsic conductivity of Ge due to its small bandgap. Anomalous Hall measurements and large magneto resistance effects are completely understood by taking a dominating substrate contribution as well as the measurement geometry into account. It is shown that substrate conduction persists also for well conducting, degenerate, p-type thin films, giving rise to an effective two-layer conduction scheme. Using n-type Ge substrates, parallel conduction through the substrate can be reduced for the p-type epi-layers, as a consequence of the emerging pn-interface junction. GeMn thin films fabricated on these substrates exhibit a negligible magneto resistance effect. Our study underlines the importance of a thorough characterization and understanding of possible substrate contributions for electrical transport studies of GeMn thin films.Comment: 9 pages, 9 figure

    Hole spin dynamics and hole gg factor anisotropy in coupled quantum well systems

    Get PDF
    Due to its p-like character, the valence band in GaAs-based heterostructures offers rich and complex spin-dependent phenomena. One manifestation is the large anisotropy of Zeeman spin splitting. Using undoped, coupled quantum wells (QWs), we examine this anisotropy by comparing the hole spin dynamics for high- and low-symmetry crystallographic orientations of the QWs. We directly measure the hole gg factor via time-resolved Kerr rotation, and for the low-symmetry crystallographic orientations (110) and (113a), we observe a large in-plane anisotropy of the hole gg factor, in good agreement with our theoretical calculations. Using resonant spin amplification, we also observe an anisotropy of the hole spin dephasing in the (110)-grown structure, indicating that crystal symmetry may be used to control hole spin dynamics

    Effect of the angle of attack of a rectangular wing on the heat transfer enhancement in channel flow at low Reynolds number

    Get PDF
    Convective heat transfer enhancement can be achieved by generating secondary flow structures that are added to the main flow to intensify the fluid exchange between hot and cold regions. One method involves the use of vortex generators to produce streamwise and transverse vortices superimposed to the main flow. This study presents numerical computation results of laminar convection heat transfer in a rectangular channel whose bottom wall is equipped with one row of rectangular wing vortex generators. The governing equations are solved using finite volume method by considering steady state, laminar regime and incompressible flow. Three-dimensional numerical simulations are performed to study the effect of the angle of attack α of the wing on heat transfer and pressure drop. Different values are taken into consideration within the range 0° < α < 30°. For all of these geometrical configurations the Reynolds number is maintained to Re = 456. To assess the effect of the angle of attack on the heat transfer enhancement, Nusselt number and the friction factor are studied on both local and global perspectives. Also, the location of the generated vortices within the channel is studied, as well as their effect on the heat transfer enhancement throughout the channel for all α values. Based on both local and global analysis, our results show that the angle of attack α has a direct impact on the heat transfer enhancement. By increasing its value, it leads to better enhancement until an optimal value is reached, beyond which the thermal performances decrease

    Heat and mass transfer enhancement by two elastic flaps oscillating in a laminar flow

    Get PDF

    Inelastic light scattering by intrasubband spin-density excitations in GaAs-AlGaAs quantum wells with balanced Bychkov-Rashba and Dresselhaus spin-orbit interaction: Quantitative determination of the spin-orbit field

    Get PDF
    Inelastic light scattering experiments on low-energy intrasubband spin-density excitations (SDEs) are performed in (001)-grown modulation-doped GaAs-AlGaAs single quantum wells in in-plane external magnetic fields. The investigated samples possess balanced linear Bychkov-Rashba (alpha) and Dresselhaus (beta) spin-orbit strengths in two different configurations, alpha = beta and alpha = -beta Both configurations lead to an extreme anisotropy of the spin splitting of the conduction band, where the in-plane directions of maximum spin splitting for both configurations are perpendicular to each other. The spin splitting asymmetry can be directly detected via the SDE by breaking of the time-reversal symmetry due to transfer of a momentum q in the quantum-well plane. In addition, the application of an in-plane magnetic field B-ext perpendicular to q allows us to modulate the effective magnetic field. Via a numerical line-shape analysis of the experimental SDE spectra, we determine the relevant parameters of the samples. We find that the linear spin-orbit strength vertical bar alpha vertical bar = beta is comparable for both samples, while the electron g factors are markedly different. Furthermore, we experimentally quantify the values of the maximum internal spin-orbit fields, which are as high as B-so similar to 18 T for both samples

    Estimation of the risk of Salmonella shedding by finishing pigs using a logistic model obtained from a survey

    Get PDF
    An analytic epidemiological survey was carried out in 105 French farms to identify factors associated with Salmonella shedding by finishing pigs. This study gave out a list of 7 risk factors using a logistic model. The aim of the present survey was to validate this model on a second sample of batches of pigs in order to estimate their Salmonella status. The validation study was carried out from April 2003 to August 2005 on 64 finishing pig batches distinct from those used originally to generate the logistic model. In each farm, Salmonella shedding of a batch of pigs at the end of the finishing phase was assessed using swabs as described in the analytical study. Questionnaires were filled in with the farmer to collect data related to management routines. Blood samples from10 growing and 10 finishing pigs were taken to assess sanitary risk factors: status vs Lawsonia intracellularis and Porcine Respiratory Coronavirus. Salmonella contamination status of a finishing room before loading, a further identified risk factor, was tested by environmental swabbing procedure. The estimated risk with the standard error, of Salmonella shedding was calculated using the logistic model and compared to the bacteriological Salmonella status of each batch. Several thresholds are proposed and sensitivity, specificity, positive and negative predictive values related to each cut-off value were calculated. A cut-off value of 0.34 maximised both sensitivity (76.9%) and specificity (68.6%) of the model. Whatever the threshold, the accuracy of the Salmonella non-shedding predicted status is better than the Salmonella shedding predicted status. In a bacteriological sampling programme, this model could be a useful tool to identify batches with low risk of Salmonella shedding and to focus attention on those getting a high probability for being positive

    Mode-multiplexing deep-strong light-matter coupling

    Full text link
    Dressing quantum states of matter with virtual photons can create exotic effects ranging from vacuum-field modified transport to polaritonic chemistry, and may drive strong squeezing or entanglement of light and matter modes. The established paradigm of cavity quantum electrodynamics focuses on resonant light-matter interaction to maximize the coupling strength ΩR/ωc\Omega_\mathrm{R}/\omega_\mathrm{c}, defined as the ratio of the vacuum Rabi frequency and the carrier frequency of light. Yet, the finite oscillator strength of a single electronic excitation sets a natural limit to ΩR/ωc\Omega_\mathrm{R}/\omega_\mathrm{c}. Here, we demonstrate a new regime of record-strong light-matter interaction which exploits the cooperative dipole moments of multiple, highly non-resonant magnetoplasmon modes specifically tailored by our metasurface. This multi-mode coupling creates an ultrabroadband spectrum of over 20 polaritons spanning 6 optical octaves, vacuum ground state populations exceeding 1 virtual excitation quantum for electronic and optical modes, and record coupling strengths equivalent to ΩR/ωc=3.19\Omega_\mathrm{R}/\omega_\mathrm{c}=3.19. The extreme interaction drives strongly subcycle exchange of vacuum energy between multiple bosonic modes akin to high-order nonlinearities otherwise reserved to strong-field physics, and entangles previously orthogonal electronic excitations solely via vacuum fluctuations of the common cavity mode. This offers avenues towards tailoring phase transitions by coupling otherwise non-interacting modes, merely by shaping the dielectric environment

    Novel design of triangular delta winglet pair for heat transfer enhancement

    Get PDF
    International audienc
    • …
    corecore