87 research outputs found

    Metabolic disorders and cardiovascular risk in HIV-infected patients treated with antiretroviral agents.

    Get PDF
    The clinical management of HIV-infected individuals is based on highly active antiretroviral combination therapy, which provides significant clinical benefit in most patients, but causes in a high proportion of them a metabolic syndrome that includes body fat redistribution, hypercholesterolemia, hypertriglyceridemia, and insulin resistance. These effects are particularly evident in patients treated with protease inhibitors. It is likely that the metabolic disorders related to anti-HIV treatment will eventually translate into an increased cardiovascular risk in patients submitted to such regimens

    Radiographers and COVID-19 pneumonia: diagnostic performance using CO-RADS

    Get PDF
    Introduction: A more structured role of radiographers is advisable to speed up the management of patients with suspected COVID-19. The purpose of our study was to evaluate the diagnostic performance of radiographers in the detection of COVID-19 pneumonia on chest CT using CO-RADS descriptors. Methods: CT images of patients who underwent RT-PCR and chest CT due to COVID-19 suspicion between March and July 2020 were analysed retrospectively. Six readers, including two radiologists, two highly experienced radiographers and two less experienced radiographers, independently scored each CT using the CO-RADS lexicon. ROC curves were used to investigate diagnostic accuracy, and Fleiss’κ statistics to evaluate inter-rater agreement. Results: 714 patients (419 men; 295 women; mean age: 64 years ±19SD) were evaluated. CO-RADS> 3 was identified as optimal diagnostic threshold. Highly experienced radiographers achieved an average sensitivity of 58.7% (95%CI: 52.5–64.7), an average specificity of 81.8% (95%CI: 77.9–85.2), and a mean AUC of 0.72 (95%CI: 0.68–0.75). Among less experienced radiographers, an average sensitivity of 56.3% (95%CI: 50.1–62.2) and an average specificity of 81.5% (95%CI: 77.6–84.9) were observed, with a mean AUC of 0.71 (95%CI: 0.68–0.74). Consultant radiologists achieved an average sensitivity of 60.0% (95%CI: 53.7–65.8), an average specificity of 81.7% (95%CI: 77.8–85.1), and a mean AUC of 0.73 (95%CI: 0.70–0.77). Conclusion: Radiographers can adequately recognise the classic appearances of COVID-19 on CT, as described by the CO-RADS assessment scheme, in a way comparable to expert radiologists. Implications for practice: Radiographers, as the first healthcare professionals to evaluate CT images in patients with suspected SARS-CoV-2 infection, could diagnose COVID-19 pneumonia by means of a categorical reporting scheme at CT in a reliable way, hence playing a primary role in the early management of these patients

    Identifying the coiled-coil triple helix structure of β-peptide nanofibers at atomic resolution

    Get PDF
    Peptide self-assembly represents a powerful bottom-up approach to the fabrication of new nanomaterials. β3-peptides are non-natural peptides composed entirely of β-amino acids, which have an extra methylene in the backbone and we reported the first fibers derived from the self-assembly of β3-peptides that adopt unique 14-helical structures. β3-peptide assemblies represent a class of stable nanomaterials that can be used to generate bio- and magneto-responsive materials with proteolytic stability. However, the three-dimensional structure of many of these materials remains unknown. In order to develop structure-based criteria for the design of new β3-peptide-based biomaterials with tailored function, we investigated the structure of a tri-β3-peptide nanoassembly by molecular dynamics simulations and X-ray fiber diffraction analysis. Diffraction data was collected from aligned fibrils formed by Ac-β3[LIA] in water and used to inform and validate the model structure. Models with threefold radial symmetry resulted in stable fibers with a triple-helical coiled-coil motif and measurable helical pitch and periodicity. The fiber models revealed a hydrophobic core and twist along the fiber axis arising from a maximization of contacts between hydrophobic groups of adjacent tripeptides on the solvent-exposed fiber surface. These atomic structures of macro-scale fibers derived from β3-peptide-based materials provide valuable insight into the effects of the geometric placement of the side-chains and the influence of solvent on the core fiber structure which is perpetuated in the superstructure morphology

    Increased sCD163 and sCD14 plasmatic levels and depletion of peripheral blood pro-inflammatory monocytes, myeloid and plasmacytoid dendritic cells in patients with severe COVID-19 pneumonia

    Get PDF
    Background: Emerging evidence argues that monocytes, circulating innate immune cells, are principal players in COVID-19 pneumonia. The study aimed to investigate the role of soluble (s)CD163 and sCD14 plasmatic levels in predicting disease severity and characterize peripheral blood monocytes and dendritic cells (DCs), in patients with COVID-19 pneumonia (COVID-19 subjects). Methods: On admission, in COVID-19 subjects sCD163 and sCD14 plasmatic levels, and peripheral blood monocyte and DC subsets were compared to healthy donors (HDs). According to clinical outcome, COVID-19 subjects were divided into ARDS and non-ARDS groups. Results: Compared to HDs, COVID-19 subjects showed higher sCD163 (p<0.0001) and sCD14 (p<0.0001) plasmatic levels. We observed higher sCD163 plasmatic levels in the ARDS group compared to the non-ARDS one (p=0.002). The cut-off for sCD163 plasmatic level greater than 2032 ng/ml was predictive of disease severity (AUC: 0.6786, p=0.0022; sensitivity 56.7% [CI: 44.1–68.4] specificity 73.8% [CI: 58.9–84.7]). Positive correlation between plasmatic levels of sCD163, LDH and IL-6 and between plasmatic levels of sCD14, D-dimer and ferritin were found. Compared to HDs, COVID-19 subjects showed lower percentages of non-classical (p=0.0012) and intermediate monocytes (p=0.0447), slanDCs (p<0.0001), myeloid DCs (mDCs, p<0.0001), and plasmacytoid DCs (pDCs, p=0.0014). Compared to the non-ARDS group, the ARDS group showed lower percentages of non-classical monocytes (p=0.0006), mDCs (p=0.0346), and pDCs (p=0.0492). Conclusions: The increase in sCD163 and sCD14 plasmatic levels, observed on hospital admission in COVID-19 subjects, especially in those who developed ARDS, and the correlations of these monocyte/macrophage activation markers with typical inflammatory markers of COVID-19 pneumonia, underline their potential use to assess the risk of progression of the disease. In an early stage of the disease, the assessment of sCD163 plasmatic levels could have clinical utility in predicting the severity of COVID-19 pneumonia

    Evaluation of BAFF, APRIL and CD40L in ocrelizumab-treated pwMS and infectious risk

    Get PDF
    Simple Summary Since B cells have been linked to multiple sclerosis (MS) and its progression as well as T cells, the second-generation anti-CD20 recombinant humanized monoclonal antibody ocrelizumab has been approved for MS treatment. Although ocrelizumab efficiently depletes B cells in peripheral blood, some B cells and CD20 negative plasma cells persist in lymphatic organs, and their survival is regulated by the B-cell-activating factor (BAFF)/a proliferation-inducing ligand (APRIL) system. Moreover, ocrelizumab may result in higher infectious risk. Herein, we investigated plasma BAFF, APRIL and CD40L levels and their relationship with infectious risk in ocrelizumab-treated people with (pw) MS at baseline, at 6 months and at 12 months after starting the treatment, comparing the above-mentioned findings with a control group. At baseline, plasma levels of all three cytokines were higher compared to the control group. In pwMS, the longitudinal assessment showed a significant increase in plasma BAFF levels and a significant reduction in plasma APRIL and CD40L. Moreover, when stratifying pwMS according to the onset of an infectious event during the 12-month follow-up period, significantly higher plasma BAFF levels were found at all time-points in the group with an infectious event than in the group without an infectious event. Hence, BAFF may have a role as a marker of immune dysfunction and infectious risk. Background: The anti-CD20 monoclonal antibody ocrelizumab has been widely employed in the treatment of people with multiple sclerosis (pwMS). However, its B-cell-depleting effect may induce a higher risk of infectious events and alterations in the secretion of B-cell-activating factors, such as BAFF, APRIL and CD40L. Methods: The aim of this study was to investigate plasma BAFF, APRIL and CD40L levels and their relationship with infectious risk in ocrelizumab-treated pwMS at baseline (T0), at 6 months (T6) and at 12 months (T12) after starting the treatment. As a control group, healthy donors (HD) were enrolled too. Results: A total of 38 pwMS and 26 HD were enrolled. At baseline, pwMS showed higher plasma BAFF (p < 0.0001), APRIL (p = 0.0223) and CD40L (p < 0.0001) levels compared to HD. Compared to T0, plasma BAFF levels were significantly increased at both T6 and T12 (p < 0.0001 and p < 0.0001, respectively). Whereas plasma APRIL and CD40L levels were decreased at T12 (p = 0.0003 and p < 0.0001, respectively). When stratifying pwMS according to the development of an infectious event during the 12-month follow-up period in two groups-with (14) and without an infectious event (24)-higher plasma BAFF levels were observed at all time-points; significantly, in the group with an infectious event compared to the group without an infectious event (T0: p < 0.0001, T6: p = 0.0056 and T12: p = 0.0400). Conclusions: BAFF may have a role as a marker of immune dysfunction and of infectious risk

    Quality of t-cell response to SARS-CoV-2 mrrna vaccine in art-treated plwh

    Get PDF
    We investigated specific humoral and T-cell responses in people living with HIV (PLWH) before (T0), after two (T1) and after six months (T2) from the third dose of the BNT162b2 vaccine. Healthy donors (HD) were enrolled. The specific humoral response was present in most PLWH already after the second dose, but the third dose increased both the rate of response and its magnitude. Collectively, no significant differences were found in the percentage of responding T-cells between PLWH and HD. At T0, stratifying PLWH according to CD4 cell count, a lower percentage of responding T-cells in 200 cells/mu L one was observed. At T1, this parameter was comparable between the two subgroups, and the same result was found at T2. However, the pattern of co-expression of IFN gamma, IL2 and TNF alpha in PLWH was characterized by a higher expression of TNF alpha, independently of CD4 cell count, indicating a persistent immunological signature despite successful ART. mRNA vaccination elicited a specific response in most PLWH, although the cellular one seems qualitatively inferior compared to HD. Therefore, an understanding of the T-cell quality dynamic is needed to determine the best vaccination strategy and, in general, the capability of immune response in ART-treated PLWH

    Development and validation of a prediction score for failure to casirivimab/imdevimab in hospitalized patients with COVID-19 pneumonia

    Get PDF
    Introduction: Casirivimab and imdevimab (CAS/IMV) are two non-competing, high-affinity human IgG1 anti-SARS-CoV-2 monoclonal antibodies, that showed a survival benefit in seronegative hospitalized patients with COVID-19. This study aimed to estimate the day-28 risk of mechanical ventilation (MV) and death in individuals hospitalized for severe COVID-19 pneumonia and receiving CAS/IMV. Additionally, it aimed to identify variables measured at the time of hospital admission that could predict these outcomes and derive a prediction algorithm. Methods: This is a retrospective, observational cohort study conducted in 12 hospitals in Italy. Adult patients who were consecutively hospitalized from November 2021 to February 2022 receiving CAS/IMV were included. A multivariable logistic regression model was used to identify predictors of MV or death by day 28 from treatment initiation, and β-coefficients from the model were used to develop a risk score that was derived by means of leave-one-out internal cross-validation (CV), external CV, and calibration. Secondary outcome was mortality. Results: A total of 480 hospitalized patients in the training set and 157 patients in the test set were included. By day 28, 36 participants (8%) underwent MV and 28 died (6%) for a total of 58 participants (12%) experiencing the composite primary endpoint. In multivariable analysis, four factors [age, PaO2/FiO2 ratio, lactate dehydrogenase (LDH), and platelets] were independently associated with the risk of MV/death and were used to generate the proposed risk score. The accuracy of the score in the area under the curve (AUC) was 0.80 and 0.77 in internal validation and test for the composite endpoint and 0.87 and 0.86 for death, respectively. The model also appeared to be well calibrated with the raw data. Conclusion: The mortality risk reported in our study was lower than that previously reported. Although CAS/IMV is no longer used, our score might help in identifying which patients are not likely to benefit from monoclonal antibodies and may require alternative interventions
    corecore