45 research outputs found

    In vitro validation and characterization of pulsed inhaled nitric oxide administration during early inspiration

    Get PDF
    Purpose: Admixture of nitric oxide (NO) to the gas inspired with mechanical ventilation can be achieved through continuous, timed, or pulsed injection of NO into the inspiratory limb. The dose and timing of NO injection govern the inspired and intrapulmonary effect site concentrations achieved with different administration modes. Here we test the effectiveness and target reliability of a new mode injecting pulsed NO boluses exclusively during early inspiration. Methods: An in vitro lung model was operated under various ventilator settings. Admixture of NO through injection into the inspiratory limb was timed either (i) selectively during early inspiration ("pulsed delivery"), or as customary, (ii) during inspiratory time or (iii) the entire respiratory cycle. Set NO target concentrations of 5-40 parts per million (ppm) were tested for agreement with the yield NO concentrations measured at various sites in the inspiratory limb, to assess the effectiveness of these NO administration modes. Results: Pulsed delivery produced inspiratory NO concentrations comparable with those of customary modes of NO administration. At low (450 ml) and ultra-low (230 ml) tidal volumes, pulsed delivery yielded better agreement of the set target (up to 40 ppm) and inspiratory NO concentrations as compared to customary modes. Pulsed delivery with NO injection close to the artificial lung yielded higher intrapulmonary NO concentrations than with NO injection close to the ventilator. The maximum inspiratory NO concentration observed in the trachea (68 +/- 30 ppm) occurred with pulsed delivery at a set target of 40 ppm. Conclusion: Pulsed early inspiratory phase NO injection is as effective as continuous or non-selective admixture of NO to inspired gas and may confer improved target reliability, especially at low, lung protective tidal volumes

    Generation of deformation-induced martensite when cryogenic turning various batches of the metastable austenitic steel AISI 347

    No full text
    Cryogenic turning of metastable austenitic steels allows for a surface layer hardening integrated into the machining process, which renders a separate hardening process obsolete. This surface layer hardening is the result of a superposition of strain hardening mechanisms and deformation-induced phase transformation from austenite to martensite. The activation energy required for the latter depends on the chemical composition of the metastable austenitic steel. It can hence be expected that the austenitic stability of the workpiece material varies depending on the batch and that differences in the metallurgical surface layer properties and thus also in the microhardness result after cryogenic turning. Therefore, in this paper, various batches of the metastable austenitic steel AISI 347 were turned utilizing cryogenic cooling with the same machining parameters. The thermomechanical load during the experiments was characterized and the resulting subsurface properties were investigated. The content of deformation-induced α′-martensite was quantified via magnetic sensor measurements and the distribution was examined using optical micrographs of etched cross-sections. It was found that similar amounts of deformation-induced α′-martensite were generated in the workpiece surface layer for all batches examined. Furthermore, the workpieces were analyzed with regard to the maximal hardness increase and the hardness penetration depth based on microhardness measurements. A significant surface layer hardening was achieved for all batches. This shows that surface layer hardening integrated in the manufacturing process is possible regardless of batch-dependent differences in the chemical composition and thus varying austenite stability of the metastable austenitic steel

    Duration of storage influences the hemoglobin rising effect of red blood cells in patients undergoing major abdominal surgery

    No full text
    BACKGROUND: After transfusion of senescent red blood cells (RBCs) a considerable fraction is rapidly cleared from the recipients' circulation. Thus, transfusion of senescent RBCs may be less effective in terms of increasing hemoglobin concentration (cHb) after transfusion. STUDY DESIGN AND METHODS: Data were retrospectively obtained in patients who underwent major abdominal surgery between 2006 and 2012. Patients were eligible if they received RBCs during surgery and had at least two arterial blood gas analyses performed. The primary endpoint was the increase of recipients' cHb related to the transfusion of 1 unit of RBCs with respect to different storage periods. Four storage periods were defined according to the distribution of RBC storage of the study population. General estimating equation was used for calculation of the primary endpoint and to adjust for confounding variables. RESULTS: A total of 598 arterial blood gas samples from 120 patients, receiving 429 RBC units, were analyzed. Mean (±SD) RBC storage was 21 (±9) days. RBC storage duration and the increase in recipients' cHb were inversely and gradually related; that is, the older the RBCs, the lower the increase in the recipients' cHb after transfusion (storage < 12 days, ΔcHb per unit RBCs +0.82 [95% confidence interval, 0.42-1.21] g/dL, p < 0.01; storage 12-20 days, +0.66 [0.46-0.86] g/dL, p < 0.01; storage 21-29 days, +0.56 [0.33-0.79] g/dL, p < 0.01; storage ≥30 days, +0.39 [0.07 to 0.71] g/dL, p = 0.02). CONCLUSION: Transfusion of senescent RBCs increased cHb less effectively than transfusion of fresher RBCs
    corecore