1,873 research outputs found

    CP Violation in D0 - anti-D0 Oscillations: General Considerations and Applications to the Littlest Higgs Model with T-Parity

    Full text link
    The observed D0 - anti-D0 oscillations provide a new stage in our search for New Physics in heavy flavour dynamics. The theoretical verdict on the observed values of x_D and y_D remains ambiguous: while they could be totally generated by Standard Model dynamics, they could also contain a sizable or even leading contribution from New Physics. Those oscillations are likely to enhance the observability of CP violation as clear manifestations of New Physics. We present general formulae for D0 - anti-D0 oscillations, concentrating on the case of negligible direct CP violation. In particular we derive a general formula for the time-dependent mixing-induced CP asymmetry in decays to a CP eigenstate and its correlation with the semileptonic CP asymmetry a_SL(D0) in D0(t) -> l nu K. We apply our formalism to the Littlest Higgs model with T-parity, using the time-dependent CP asymmetry in D -> K_S phi as an example. We find observable effects at a level well beyond anything possible with CKM dynamics. Comparisons with CP violation in the K and B systems offer an excellent test of this scenario and reveal the specific pattern of flavour and CP violation in the D0 - anti-D0 system predicted by this model. We discuss a number of charm decays that could potentially offer an insight in the dynamics of CP violation in D decays. We also apply our formalism to B_s - anti-B_s mixing.Comment: 26 pages, 9 png figures, 1 table. v2: eq. (A.1) corrected, minor clarifying comments and few references added. v3: typos corrected, matches published versio

    Top quark chromomagnetic dipole moment in the littlest Higgs model with T-parity

    Full text link
    The littlest Higgs model with T-parity, which is called LHTLHT model, predicts the existence of the new particles, such as heavy top quark, heavy gauge bosons, and mirror fermions. We calculate the one-loop contributions of these new particles to the top quark chromomagnetic dipole moment (CMDM)(CMDM) ΔK\Delta K. We find that the contribution of the LHTLHT model is one order of magnitude smaller than the standard model prediction value.Comment: latex files, 12 pages, 3 figure

    Rare K and B Decays in a Warped Extra Dimension with Custodial Protection

    Full text link
    We present a complete study of rare K and B meson decays in a warped extra dimensional model with a custodial protection of (both diagonal and non-diagonal) Z d_L^i \bar d_L^j couplings, including K^+ -> pi^+ nu anti-nu, K_L -> pi^0 nu anti-nu, K_L -> pi^0 l^+ l^-, K_L -> mu^+ mu^-, B_{s,d} -> mu^+ mu^-, B -> K nu anti-nu, B -> K^* nu anti-nu and B -> X_{s,d} nu anti-nu. In this model in addition to Standard Model one loop contributions these processes receive tree level contributions from the Z boson and the new heavy electroweak gauge bosons. We analyse all these contributions that turn out to be dominated by tree level Z boson exchanges governed by right-handed couplings to down-type quarks. Imposing all existing constraints from Delta F=2 transitions analysed by us recently and fitting all quark masses and CKM mixing parameters we find that a number of branching ratios for rare K decays can differ significantly from the SM predictions, while the corresponding effects in rare B decays are modest, dominantly due to the custodial protection being more effective in B decays than in K decays. In order to reduce the parameter dependence we study correlations between various observables within the K system, within the B system and in particular between K and B systems, and also between Delta F=2 and Delta F=1 observables. These correlations allow for a clear distinction between this new physics scenario and models with minimal flavour violation or the Littlest Higgs Model with T-parity, and could give an opportunity to future experiments to confirm or rule out the model. We show how our results would change if the custodial protection of Z d_L^i bar d^j_L couplings was absent. In the case of rare B decays the modifications are spectacular.Comment: 50 pages, 17 figures. v2: minor clarifying comments and references added. v3: few clarifying comments added, matches published versio

    Minimal Flavour Violation and Beyond

    Full text link
    Starting from the effective-theory framework for Minimal Flavour Violation, we give a systematic definition of next-to-minimal (quark) flavour violation in terms of a set of spurion fields exhibiting a particular hierarchy with respect to a small (Wolfenstein-like) parameter. A few illustrative examples and their consequences for charged and neutral decays with different quark chiralities are worked out in some detail. Our framework can be used as a model-independent classification scheme for the parameterization of flavour structure from physics beyond the Standard Model.Comment: 17 pages, no figures, phenomenological discussion extended, references adde

    Electroweak and Flavour Structure of a Warped Extra Dimension with Custodial Protection

    Full text link
    We present the electroweak and flavour structure of a model with a warped extra dimension and the bulk gauge group SU(3) x SU(2)_L x SU(2)_R x P_LR x U(1)_X. The presence of SU(2)_R implies an unbroken custodial symmetry in the Higgs system allowing to eliminate large contributions to the T parameter, whereas the P_LR symmetry and the enlarged fermion representations provide a custodial symmetry for flavour diagonal and flavour changing couplings of the SM Z boson to left-handed down-type quarks. We diagonalise analytically the mass matrices of charged and neutral gauge bosons including the first KK modes. We present the mass matrices for quarks including heavy KK modes and discuss the neutral and charged currents involving light and heavy fields. We give the corresponding complete set of Feynman rules in the unitary gauge.Comment: 74 pages, 2 figures. clarifying comments and references added, version to be published in JHE

    Indirect tests of the Randall-Sundrum model

    Full text link
    I present phenomenological implications of the Randall-Sundrum model for indirect searches, specifically a selection of flavor observables and Higgs-related collider searches. I review the interplay of constraints from CP violation in flavor physics, possible effects in rare decays, and model-specific protection mechanisms. Deviations in the Higgs couplings to fermions and, at one-loop, to gluons are unexpectedly strong and lead to strong modifications in Higgs searches.Comment: 8 pages, 6 figures; Talk given at Discrete '10: Symposium on Prospects in the Physics of Discrete Symmetries, Rome, Italy, 6-11 Dec 201

    Precise limits from lepton flavour violating processes on the Littlest Higgs model with T-parity

    Full text link
    We recalculate the leading one-loop contributions to mu > e gamma and mu -> eee in the Littlest Higgs model with T-parity, recovering previous results for the former. When all the Goldstone interactions are taken into account, the latter is also ultraviolet finite. The present experimental limits on these processes require a somewhat heavy effective scale ~2.5 TeV, or the flavour alignment of the Yukawa couplings of light and heavy leptons at the ~10% level, or the splitting of heavy lepton masses to a similar precision. Present limits on tau decays set no bounds on the corresponding parameters involving the tau leptonComment: 41 pages, 11 figures; v3: matches published version in JHE

    Photon-induced production of the mirror quarks from the LHTLHT model at the LHCLHC

    Full text link
    The photon-induced processes at the LHCLHC provide clean experimental conditions due to absence of the proton remnants, which might produce complementary and interesting results for tests of the standard model and for searching of new physics. In the context of the littlest HiggsHiggs model with T-parity, we consider the photon-induced production of the mirror quarks at the LHCLHC. The cross sections for various production channels are calculated and a simply phenomenology analysis is performed by assuming leptonic decays.Comment: 20 pages, 10 figure

    On CP Asymmetries in Two-, Three- and Four-Body D Decays

    Full text link
    Indirect and direct CP violations have been established in K_L and B_d decays. They have been found in two-body decay channels -- with the exception of K_L to pi^+ pi^- e^+ e^- transitions. Evidence for direct CP asymmetry has just appeared in LHCb data on A_{CP}(D^0 to K^+ K^-) - A_{CP}(D^0 to pi^+ pi^-) with 3.5 sigma significance. Manifestations of New Dynamics (ND) can appear in CP asymmetries just below experimental bounds. We discuss D^{\pm}_{(s)}, D^0/\bar D^0 and D_L/D_S transitions to 2-, 3- and 4-body final states with a comment on predictions for inclusive vs. exclusive CP asymmetries. In particular we discuss T asymmetries in D to h_1 h_2 l^+ l^- in analogy with K_L to pi^+ pi^- e^+ e^- transitions due to interference between M1, internal bremsstrahlung and possible E1 amplitudes. Such an effect depends on the strength of CP violation originating from the ND -- as discussed here for Little Higgs Models with T parity and non-minimal Higgs sectors -- but also in the interferences between these amplitudes even in the Standard Model (SM). More general lessons can be learnt for T asymmetries in non-leptonic D decays like D to h_1h_2 h_3 h_4. Such manifestations of ND can be tested at LHCb and other Super-Flavour Factories like the projects at KEK near Tokyo and at Tor Vergata/Frascati near Rome.Comment: 27 pages, 6 figures. Revised with current results from LHCb and HFAG and further interpretation
    corecore