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RUDDER-ROLL DAMPING CONTROLLER DESIGN USING   µµ SYNTHESIS
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Abstract: The effectiveness of rudder roll damping control is very sensitive to
uncertainty in ship dynamic parameters.  In this paper, an H∞ controller is designed
using µ synthesis and an uncertainty model for roll and yaw that was identified earlier
from experiments at sea.  The properties of the resulting controller are discussed and
seaway simulations with linear and non-linear models of a container ship illustrate the
controller performance.  The simulation results show that the µ synthesis controller is
able to obtain robust performance over an envelope of operational conditions.

Keywords: Ship control, multivariable control, structured singular value, uncertainty,
robust control

1.  INTRODUCTION

Roll damping systems for ships are employed to
increase comfort for passengers, maintain full
working capabilities for members of the crew, and
prevent cargo damage.  Dedicated fins for roll dam-
ping is traditionally installed to provide damping of
roll motion, but utilisation of the rudder can be a
much cheaper, yet also effective solution.  Several re-
searchers have analysed roll damping by means of
rudders.  Investigations have shown that the roll
reduction obtained by the rudder could be 50%~70%
for a specific vessel, however it highly depends on
the dynamics of the ship.  Experiments have been
carried out in which a rudder-roll damping (RRD)
controller performed satisfactorily for one ship but
unsatisfactorily for another, although the two were
sister ships with the same hull geometry but small
differences in the form of bilge keels, rudder shape
and loading (Blanke and Christensen, 1993). The
different results were referred to ship model pertur-
bation, indicating that RRD is highly sensitive to
model uncertainty. Hence, it is crucial that design of

rudder-roll damping control is done with appropriate
robust performance in mind.

The aim is to enable the control system to cope with
model uncertainties.  Earlier results have shown that a
controller can obtain good robust stability and robust
performance when designed by H∞ control theory.  A
multi-objective design was proposed by Stoustrup, et
al., (1995), but that design did not consider model
uncertainty.  Some work was done using mixed
sensitivity approach with unstructured perturbation
(Yang and Blanke, 1997).  This paper will use
µ synthesis for design the controller.

The mathematical framework for the ship model is
first outlined.  Modelling uncertainty is then addres-
sed, and a µ synthesis is conducted.  Properties of the
resulting controller are issued and simulations used to
illustrate time responses in a seaway.

2. SHIP MODEL AND DISTURBANCE

2.1  Non-linear model



Six degrees of freedom are needed to describe ship
kinematics and basic ship hydrodynamics. Pitch and
heave can generally be neglected if the study concen-
trate on course keeping and roll damping. Ship
motion modelling is thus considered in surge, sway,
yaw and roll. The ship motion equations of these
four-degrees of freedom are given based on the
Newtonian equation (Blanke and Jensen 1997):
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Where ∇ denotes the ship displacement, g the gravity
constant, ρ the mass density of water and Gz(ϕ) the
righting arm which is a known function of roll angle
ϕ.  The centre of gravity is assumed at position (xG, 0,
zG), the ship mass is m while Ix and Iz are the inertias
with respect to  the x and z axes. The linear surge and
sway velocities are denoted by u and v and angular
yaw and roll velocities by r and p. The corresponding
angles are ψ and ϕ in an inertial frame.

The terms X, Y, N and K denote the hydrodynamic
forces and moments. They can be calculated by
expanding to a 3rd-order Taylor series at u'=u'0, v'=0,
p'=0 and 'r=0. The ' indicate non-dimensional
quantities in the "prime" system.
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∆u = u - u0, ∆U = U - U0 and 22 vuU += . The
state vector x  in Eq. (9) is obtained from (1) ~ (4).
The roll and yaw angles are added to obtain

x = [u, v, r, p, ϕ, ψ ]T (9)

where ψ and ϕ are related to p and r by p=ϕ�  and

rr ≈= )cos(/ ϕψ� . The coefficients needed for

describing the container in four degrees of freedom
were given in (Blanke and Jensen, 1997)1.

2.2  Linear model

It is difficulty to use the non-linear model directly in
robust control design. The non-linear model must be
replaced in calculation of controller by linear model
because most of the theorems derived based on linear
theory. However, it is easy to obtain a linear model if
a non-linear model exist. In this paper, a linear model
is obtained by linearisation of Equations (1) to (8)
with cos(ϕ) ≈ 1 because ϕ  is assumed small.

Considering motions in roll and yaw, the surge equa-
tion has only a weak dynamic coupling. Instead of a
part of the dynamics, ship speed U is a parameter,
and there are only five states in the linear model, x =
[v, r, p, ϕ, ψ]T. The simplified linear model can be
written as

Ex Fx G
�

= + δ ; (10)

where the linearized model matrices E, F and G can
be seen in (Yang, 1997). The input is the rudder
angle δ  and ship speed U is a parameter.

The frequency characteristic of open loop transfer
function from rudder to roll angle is plotted in Fig. 1.
A resonant peak is observed at about 0.23 rad/s
where the ship roll angle will be significant.  This fre-
quency is known as the natural roll eigenfrequency.

2.3 Model uncertainty

Model uncertainty can cause instability and poor
performance of a nominally stable system, as found
for sister ships mentioned in the introduction. The
slight modification of ship parameters could be
considered as output multiplicative model uncer-
tainty.  The relation between multiplicative model
uncertainty and the nominal process G(s) is

                                                     
1 There are two sets of parameters for the container ship in
the reference. One set comes from RPMM model test, the
other is modified to fit full scale tests (Blanke and Jensen,
1997). The unmodified model is directionally unstable
around zero turn rate, the modified is marginally stable.
The coupling between steering and roll is also different for
the two models.
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Fig. 1. Frequency characteristic of open loop transfer
function from rudder to roll angle

    Fig. 2.  Ship model multiplicative uncertainty
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where Gp(s) is the perturbed process, i.e. the real
system. The block diagram for the closed loop is
shown in Fig 2.

For a ships roll damping, the following uncertainty
model was found for a multi-purpose naval vessel
(Blanke, 1996). Since there are no general results for
container ships, the same uncertainty model is used
here,
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where α = 0.5, ∇is displacement and ∇0 is nominal
displacement.  This equation is valid only when  the
displacement is smaller than nominal. The terms ω0

and ζ0 are natural roll frequency and damping, re-
spectively. Damping typically is in the range 0.15 -
0.25.

For yaw rate, a frequency independent uncertainty of
0.1 is suggested by the same paper (Blanke, 1996).
Accordingly, the following uncertainty description is
used for the rudder to yaw angle.
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2.4 Wave model

Waves, wind and current are the principal factors
causing disturbances of ship on the sea. In terms of
ship roll, wave is the most important disturbance. A
long crested irregular sea is described by a one
dimensional amplitude spectrum recommended by
ISSC that can be written as
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where h1/3 is the average height of largest third of the
waves, ωw is angular frequency, Tw is the average
wave period.

The relation between ship motion response and wave
height is commonly named a receptance function. It is
influenced by the wave frequency and the receptance
function must be transformed from wave frequency to
encounter frequency before access to motion spectra
can be made.

For the moving ship, the encounter frequency is
associated with the wave frequency and wave energy
and the speed of the ship by

           ω ω ω χe w w

U

g
= −( cos )1  (15)

where χ is the encounter angle, the direction of the
wave propagation relative to the ship.

Because the wave energy in a frequency interval is
unaffected by the speed of observation platform,
following equation hold.

    G d G dzz w w zz e e( , ) ( , )ω χ ω ω χ ω=  (16)

An approximation of a sea spectrum by a finite sum
of sinusoids with random initial phases is

    z t a t
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The individual amplitudes of the sines are
conveniently taken as median points between
frequencies where the response operators are, known,
tabulated (Blanke, 1981; Tiano et al. 1996).
Frequencies ωe,j and phase angles ϕi are tabular
values from the response operator tables. The initial
phase is a random number used for initialization. The
amplitudes ai are calculated from

     a R Ui z w w i i= 2 2
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