5 research outputs found

    Excess amounts of 3-iodo-l-tyrosine induce Parkinson-like features in experimental approaches of Parkinsonism

    No full text
    [eng] 3-iodo-l-tyrosine might play a role in Parkinson's disease since this molecule is able, at high concentration, to inhibit tyrosine-hydroxylase activity, the rate-limiting enzyme in dopamine biosynthesis. The possible Parkinson-like effects of 3-iodo-l-tyrosine were tested on three experimental approaches in mice: cultured substantia nigra neurons, the enteric nervous system of the jejunum after intra-peritoneal infusions, and the nigrostriatal system following unilateral intrabrain injections. 3-iodo-l-tyrosine, a physiological molecule, was used at concentrations higher than its serum levels in humans. Parkinson-like signs were evaluated through abnormal aggregation of α-synuclein and tyrosine-hydroxylase, loss of tyrosine-hydroxylase-expressing and striatum-projecting neurons and fibers, reduced tyrosine-hydroxylase density, and Parkinson-like motor and non-motor deficits. The retrograde tracer FluoroGold was used in the brain model. The findings revealed that excess amounts of 3-iodo-l-tyrosine induce Parkinson-like effects in the three experimental approaches. Thus, culture neurons of substantia nigra show, after 3-iodo-l-tyrosine exposure, intracytoplasmic inclusions that express α-synuclein and tyrosine-hydroxylase. Intra-peritoneal infusions of 3-iodo-l-tyrosine cause, in the long-term, α-synuclein aggregation, thicker α-synuclein-positive fibers, and loss of tyrosine-hydroxylase-positive cells and fibers in intramural plexuses and ganglia of the jejunum. Infusion of 3-iodo-l-tyrosine into the left dorsal striata of mice damages the nigrostriatal system, as revealed through lower striatal tyrosine-hydroxylase density, reduced number of tyrosine-hydroxylase-expressing and striatum-projecting neurons in the left substantia nigra, as well as the emergence of Parkinson-like behavioral deficits such as akinesia, bradykinesia, motor disbalance, and locomotion directional bias. In conclusion, excess amounts of 3-iodo-l-tyrosine induce Parkinson-like features in cellular, enteric and brain approaches of Parkinsonism in mice

    Methamphetamine binge administration during late adolescence induced enduring hippocampal cell damage following prolonged withdrawal in rats.

    No full text
    [eng] A recent study from our laboratory demonstrated that binge methamphetamine induced hippocampal cell damage (i.e., impaired cell genesis) in rats when administered specifically during late adolescence (postnatal day, PND 54-57) and evaluated 24 h later (PND 58). The results also suggested a possible role for brain-derived neurotrophic factor (BDNF) regulating cell genesis and survival. This subsequent study evaluated whether these effects persisted in time as measured following prolonged withdrawal. Male Sprague-Dawley rats were treated (i.p.) with BrdU (2 × 50 mg/kg, 3 days, PND 48-50) followed by a binge paradigm (3 pulses/day, every 3 h, 4 days, PND 54-57) of methamphetamine (5 mg/kg, n = 14, M) or saline (0.9% NaCl, 1 ml/kg, n = 12, C). Following 34 days of forced withdrawal (PND 91), rats were killed 45 min after a challenge dose of saline (Sal: C-Sal, n = 6; M-Sal, n = 7) or methamphetamine (Meth: C-Meth, n = 6; M-Meth, n = 7). Neurogenesis markers (Ki-67: cell proliferation; NeuroD: early neuronal survival; BrdU: prolonged cell survival, 41-43 days old cells) were evaluated by immunohistochemistry while neuroplasticity markers (BDNF and Fos forms) were evaluated by Western blot. The main results showed that a history of methamphetamine administration (PND 54-57) induced enduring hippocampal cell damage (i.e., observed on PND 91) by decreasing cell survival (BrdU + cells) and mature-BDNF (m-BDNF) protein content, associated with neuronal survival, growth and differentiation. Interestingly, m-BDNF regulation paralleled hippocampal c-Fos protein content, indicating decreased neuronal activity, and thus reinforcing the persisting negative effects induced by methamphetamine in rat hippocampus following prolonged withdrawal
    corecore