14 research outputs found

    Different Domains of the RNA Polymerase of Infectious Bursal Disease Virus Contribute to Virulence

    Get PDF
    BACKGROUND: Infectious bursal disease virus (IBDV) is a pathogen of worldwide significance to the poultry industry. IBDV has a bi-segmented double-stranded RNA genome. Segments A and B encode the capsid, ribonucleoprotein and non-structural proteins, or the virus polymerase (RdRp), respectively. Since the late eighties, very virulent (vv) IBDV strains have emerged in Europe inducing up to 60% mortality. Although some progress has been made in understanding the molecular biology of IBDV, the molecular basis for the pathogenicity of vvIBDV is still not fully understood. METHODOLOGY, PRINCIPAL FINDINGS: Strain 88180 belongs to a lineage of pathogenic IBDV phylogenetically related to vvIBDV. By reverse genetics, we rescued a molecular clone (mc88180), as pathogenic as its parent strain. To study the molecular basis for 88180 pathogenicity, we constructed and characterized in vivo reassortant or mosaic recombinant viruses derived from the 88180 and the attenuated Cu-1 IBDV strains. The reassortant virus rescued from segments A of 88180 (A88) and B of Cu-1 (BCU1) was milder than mc88180 showing that segment B is involved in 88180 pathogenicity. Next, the exchange of different regions of BCU1 with their counterparts in B88 in association with A88 did not fully restore a virulence equivalent to mc88180. This demonstrated that several regions if not the whole B88 are essential for the in vivo pathogenicity of 88180. CONCLUSION, SIGNIFICANCE: The present results show that different domains of the RdRp, are essential for the in vivo pathogenicity of IBDV, independently of the replication efficiency of the mosaic viruses

    A non-canonical lon proteinase lacking the ATPase domain employs the ser-Lys catalytic dyad to exercise broad control over the life cycle of a double-stranded RNA virus.

    No full text
    We have identified a region related to the protease domain of bacterial and organelle ATP-dependent Lon proteases in virus protein 4 (VP4) of infectious bursal disease virus strain P2 (IBDVP2), a two-segmented double-stranded RNA virus. Unlike canonical Lons, IBDVP2 VP4 possesses a proteinase activity though it lacks an ATPase domain. Ser652 and Lys692 of IBDVP2 VP4 are conserved across the Lon/VP4 family and are essential for catalysis. Lys692 has the properties of a general base, increasing the nucleophilicity of Ser652; a similar catalytic dyad may function in the other Lons. VP4 can cleave in trans and is responsible for the interdomain proteolytic autoprocessing of the pVP2- VP4-VP3 polyprotein encoded by RNA segment A. VP2, which is later derived from pVP2, and VP3 are major capsid proteins of birnaviruses. Results of the characterization of a range of the IBDVP2 VP4 mutants in cell cultures implicate VP4 in trans-activation of the synthesis of VP1, putative RNA-dependent RNA polymerase encoded by RNA segment B, and in cleavage rate-dependent control of process(es) crucial for the generation of the infectious virus progeny

    Molecular Determinants of Virulence, Cell Tropism, and Pathogenic Phenotype of Infectious Bursal Disease Virus

    No full text
    Infectious bursal disease viruses (IBDVs), belonging to the family Birnaviridae, exhibit a wide range of immunosuppressive potential, pathogenicity, and virulence for chickens. The genomic segment A encodes all the structural (VP2, VP4, and VP3) and nonstructural proteins, whereas segment B encodes the viral RNA-dependent RNA polymerase (VP1). To identify the molecular determinants for the virulence, pathogenic phenotype, and cell tropism of IBDV, we prepared full-length cDNA clones of a virulent strain, Irwin Moulthrop (IM), and constructed several chimeric cDNA clones of segments A and B between the attenuated vaccine strain (D78) and the virulent IM or GLS variant strain. Using the cRNA-based reverse-genetics system developed for IBDV, we generated five chimeric viruses after transfection by electroporation procedures in Vero or chicken embryo fibroblast (CEF) cells, one of which was recovered after propagation in embryonated eggs. To evaluate the characteristics of the recovered viruses in vivo, we inoculated 3-week-old chickens with D78, IM, GLS, or chimeric viruses and analyzed their bursae for pathological lesions 3 days postinfection. Viruses in which VP4, VP4-VP3, and VP1 coding sequences of the virulent strain IM were substituted for the corresponding region in the vaccine strain failed to induce hemorrhagic lesions in the bursa. In contrast, viruses in which the VP2 coding region of the vaccine strain was replaced with the variant GLS or virulent IM strain caused rapid bursal atrophy or hemorrhagic lesions in the bursa, as seen with the variant or classical virulent strain, respectively. These results show that the virulence and pathogenic-phenotype markers of IBDV reside in VP2. Moreover, one of the chimeric viruses containing VP2 sequences of the virulent strain could not be recovered in Vero or CEF cells but was recovered in embryonated eggs, suggesting that VP2 contains the determinants for cell tropism. Similarly, one of the chimeric viruses containing the VP1 segment of the virulent strain could not be recovered in Vero cells but was recovered in CEF cells, suggesting that VP1 contains the determinants for cell-specific replication in Vero cells. By comparing the deduced amino acid sequences of the D78 and IM strains and their reactivities with monoclonal antibody 21, which binds specifically to virulent IBDV, the putative amino acids involved in virulence and cell tropism were identified. Our results indicate that residues Gln at position 253 (Gln253), Asp279, and Ala284 of VP2 are involved in the virulence, cell tropism, and pathogenic phenotype of virulent IBDV
    corecore