10,546 research outputs found
Quark-lepton complementarity model based predictions for with neutrino mass hierarchy
After the successful investigation and confirmation of non zero
by various experiments, we are standing at a square where
we still encounter a number of issues, which are to be settled. In this paper,
we have extended our recent work towards a precise prediction of the
mixing angle, taking into account the neutrino mass
hierarchy. We parameterize the non-trivial correlation between quark (CKM) and
lepton (PMNS) mixing matrices in quark-lepton complementarity (QLC) model as
, where is a diagonal phase matrix.
Monte Carlo simulations are used to estimate the texture of and compare
the results with the standard Tri-Bi-Maximal (TBM) and Bi-Maximal(BM)
structures of neutrino mixing matrix. We have predicted the value of
for normal and inverted neutrino mass hierarchies. The
value of obtained for two cases are about away
from each other, implying the better precision can give us a strong hint for
the type of neutrino mass hierarchy.Comment: 3 pages, 3 figure
Harnessing Electrical Power from Vortex-Induced Vibration of a Circular Cylinder
The generation of electrical power from Vortex-Induced Vibration (VIV) of a
cylinder is investigated numerically. The cylinder is free to oscillate in the
direction transverse to the incoming flow. The cylinder is attached to a magnet
that can move along the axis of a coil made from conducting wire. The magnet
and the coil together constitute a basic electrical generator. When the
cylinder undergoes VIV, the motion of the magnet creates a voltage across the
coil, which is connected to a resistive load. By Lenz's law, induced current in
the coil applies a retarding force to the magnet. Effectively, the electrical
generator applies a damping force on the cylinder with a spatially varying
damping coefficient. For the initial investigation reported here, the Reynolds
number is restricted to Re < 200, so that the flow is laminar and
two-dimensional (2D). The incompressible 2D Navier-Stokes equations are solved
using an extensively validated spectral-element based solver. The effects of
the electromagnetic (EM) damping constant xi_m, coil dimensions (radius a,
length L), and mass ratio on the electrical power extracted are quantified. It
is found that there is an optimal value of xi_m (xi_opt) at which maximum
electrical power is generated. As the radius or length of the coil is
increased, the value of xi_opt is observed to increase. Although the maximum
average power remains the same, a larger coil radius or length results in a
more robust system in the sense that a relatively large amount of power can be
extracted when xi_m is far from xi_opt, unlike the constant damping ratio case.
The average power output is also a function of Reynolds number, primarily
through the increased maximum oscillation amplitude that occurs with increased
Reynolds number at least within the laminar range, although the general
qualitative findings seem likely to carry across to high Reynolds number VIV
Electrochemical incineration of wastes
The novel technology of waste removal in space vehicles by electrochemical methods is presented to convert wastes into chemicals that can be eventually recycled. The important consideration for waste oxidation is to select a right kind of electrode (anode) material that should be stable under anodic conditions and also a poor electrocatalyst for oxygen and chlorine evolution. On the basis of long term electrolysis experiments on seven different electrodes and on the basis of total organic carbon reduced, two best electrodes were identified. The effect of redox ions on the electrolyte was studied. Though most of the experiments were done in mixtures of urine and waste, the experiments with redox couples involved 2.5 M sulfuric acid in order to avoid the precipitation of redox ions by urea. Two methods for long term electrolysis of waste were investigated: (1) the oxidation on Pt and lead dioxide electrodes using the galvanostatic methods; and (2) potentiostatic method on other electrodes. The advantage of the first method is the faster rate of oxidation. The chlorine evolution in the second method is ten times less then in the first. The accomplished research has shown that urine/feces mixtures can be oxidized to carbon dioxide and water, but current densities are low and must be improved. The perovskite and Ti4O7 coated with RuO2 are the best electrode materials found. Recent experiment with the redox agent improves the current density, however, sulphuric acid is required to keep the redox agent in solution to enhance oxidation effectively. It is desirable to reduce the use of acid and/or find substitutes
- …