53 research outputs found
Supercritical Space-Width Trade-Offs for Resolution
We show that there are CNF formulas which can be refuted in resolution in both small space and small width, but for which any small-width resolution proof must have space exceeding by far the linear worst-case upper bound. This significantly strengthens the space-width trade-offs in [Ben- Sasson 2009], and provides one more example of trade-offs in the "supercritical" regime above worst case recently identified by [Razborov 2016]. We obtain our results by using Razborov's new hardness condensation technique and combining it with the space lower bounds in [Ben-Sasson and Nordström 2008].</p
Answering Conjunctive Queries under Updates
We consider the task of enumerating and counting answers to -ary
conjunctive queries against relational databases that may be updated by
inserting or deleting tuples. We exhibit a new notion of q-hierarchical
conjunctive queries and show that these can be maintained efficiently in the
following sense. During a linear time preprocessing phase, we can build a data
structure that enables constant delay enumeration of the query results; and
when the database is updated, we can update the data structure and restart the
enumeration phase within constant time. For the special case of self-join free
conjunctive queries we obtain a dichotomy: if a query is not q-hierarchical,
then query enumeration with sublinear delay and sublinear update time
(and arbitrary preprocessing time) is impossible.
For answering Boolean conjunctive queries and for the more general problem of
counting the number of solutions of k-ary queries we obtain complete
dichotomies: if the query's homomorphic core is q-hierarchical, then size of
the the query result can be computed in linear time and maintained with
constant update time. Otherwise, the size of the query result cannot be
maintained with sublinear update time. All our lower bounds rely on the
OMv-conjecture, a conjecture on the hardness of online matrix-vector
multiplication that has recently emerged in the field of fine-grained
complexity to characterise the hardness of dynamic problems. The lower bound
for the counting problem additionally relies on the orthogonal vectors
conjecture, which in turn is implied by the strong exponential time hypothesis.
By sublinear we mean for some
, where is the size of the active domain of the current
database
Reduction Techniques for Graph Isomorphism in the Context of Width Parameters
We study the parameterized complexity of the graph isomorphism problem when
parameterized by width parameters related to tree decompositions. We apply the
following technique to obtain fixed-parameter tractability for such parameters.
We first compute an isomorphism invariant set of potential bags for a
decomposition and then apply a restricted version of the Weisfeiler-Lehman
algorithm to solve isomorphism. With this we show fixed-parameter tractability
for several parameters and provide a unified explanation for various
isomorphism results concerned with parameters related to tree decompositions.
As a possibly first step towards intractability results for parameterized graph
isomorphism we develop an fpt Turing-reduction from strong tree width to the a
priori unrelated parameter maximum degree.Comment: 23 pages, 4 figure
Graphs Identified by Logics with Counting
We classify graphs and, more generally, finite relational structures that are
identified by C2, that is, two-variable first-order logic with counting. Using
this classification, we show that it can be decided in almost linear time
whether a structure is identified by C2. Our classification implies that for
every graph identified by this logic, all vertex-colored versions of it are
also identified. A similar statement is true for finite relational structures.
We provide constructions that solve the inversion problem for finite
structures in linear time. This problem has previously been shown to be
polynomial time solvable by Martin Otto. For graphs, we conclude that every
C2-equivalence class contains a graph whose orbits are exactly the classes of
the C2-partition of its vertex set and which has a single automorphism
witnessing this fact.
For general k, we show that such statements are not true by providing
examples of graphs of size linear in k which are identified by C3 but for which
the orbit partition is strictly finer than the Ck-partition. We also provide
identified graphs which have vertex-colored versions that are not identified by
Ck.Comment: 33 pages, 8 Figure
On the speed of constraint propagation and the time complexity of arc consistency testing
Establishing arc consistency on two relational structures is one of the most
popular heuristics for the constraint satisfaction problem. We aim at
determining the time complexity of arc consistency testing. The input
structures and can be supposed to be connected colored graphs, as the
general problem reduces to this particular case. We first observe the upper
bound , which implies the bound in terms of
the number of edges and the bound in terms of the number of
vertices. We then show that both bounds are tight up to a constant factor as
long as an arc consistency algorithm is based on constraint propagation (like
any algorithm currently known).
Our argument for the lower bounds is based on examples of slow constraint
propagation. We measure the speed of constraint propagation observed on a pair
by the size of a proof, in a natural combinatorial proof system, that
Spoiler wins the existential 2-pebble game on . The proof size is bounded
from below by the game length , and a crucial ingredient of our
analysis is the existence of with . We find one
such example among old benchmark instances for the arc consistency problem and
also suggest a new, different construction.Comment: 19 pages, 5 figure
Peptide Bond Distortions from Planarity: New Insights from Quantum Mechanical Calculations and Peptide/Protein Crystal Structures
By combining quantum-mechanical analysis and statistical survey of peptide/protein structure databases we here report a thorough investigation of the conformational dependence of the geometry of peptide bond, the basic element of protein structures. Different peptide model systems have been studied by an integrated quantum mechanical approach, employing DFT, MP2 and CCSD(T) calculations, both in aqueous solution and in the gas phase. Also in absence of inter-residue interactions, small distortions from the planarity are more a rule than an exception, and they are mainly determined by the backbone ψ dihedral angle. These indications are fully corroborated by a statistical survey of accurate protein/peptide structures. Orbital analysis shows that orbital interactions between the σ system of Cα substituents and the π system of the amide bond are crucial for the modulation of peptide bond distortions. Our study thus indicates that, although long-range inter-molecular interactions can obviously affect the peptide planarity, their influence is statistically averaged. Therefore, the variability of peptide bond geometry in proteins is remarkably reproduced by extremely simplified systems since local factors are the main driving force of these observed trends. The implications of the present findings for protein structure determination, validation and prediction are also discussed
The nucleotide addition cycle of RNA polymerase is controlled by two molecular hinges in the Bridge Helix domain
Abstract Background Cellular RNA polymerases (RNAPs) are complex molecular machines that combine catalysis with concerted conformational changes in the active center. Previous work showed that kinking of a hinge region near the C-terminus of the Bridge Helix (BH-HC) plays a critical role in controlling the catalytic rate. Results Here, new evidence for the existence of an additional hinge region in the amino-terminal portion of the Bridge Helix domain (BH-HN) is presented. The nanomechanical properties of BH-HN emerge as a direct consequence of the highly conserved primary amino acid sequence. Mutations that are predicted to influence its flexibility cause corresponding changes in the rate of the nucleotide addition cycle (NAC). BH-HN displays functional properties that are distinct from BH-HC, suggesting that conformational changes in the Bridge Helix control the NAC via two independent mechanisms. Conclusions The properties of two distinct molecular hinges in the Bridge Helix of RNAP determine the functional contribution of this domain to key stages of the NAC by coordinating conformational changes in surrounding domains.</p
Scenario Analysis as a Tool for Informing the Design of Behaviour Change Interventions
This article presents the design process behind the specification of a behaviour change intervention method to promote energy saving. The amount of energy used for food preparation is highly influenced by people’s behaviours. A user-centred design approach based on scenario analysis was applied to provide understanding of context of use and specification of user requirements. This knowledge was applied to the design of behaviour change interventions to motivate sustainable behaviours
- …
