31 research outputs found

    Co3O4/ZnO Nanocomposites: From Plasma Synthesis to Gas Sensing Applications

    No full text
    Herein, we describe the design, fabrication and gas sensing tests of p-Co3O4/n-ZnO nanocomposites. Specifically, arrays of oriented ZnO nanoparticles were grown on alumina substrates by plasma enhanced-chemical vapor deposition (PECVD) and used as templates for the Subsequent PECVD of Co3O4 nanograins. Structural, morphological and compositional analyses evidenced the successful formation of pure and high-area nanocomposites with a tailored overdispersion of Co3O4 particles on ZnO and an intimate contact between the two oxides. Preliminary functional tests for the detection of flammable/toxic analytes (CH3COCH3, CH3CH2OH, NO2) indicated promising sensing responses and the possibility of discriminating between reducing and oxidizing species as a function of the operating temperature

    1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable toxic and gases

    No full text
    In this work, 1D ZnO nano-assemblies were prepared on Al(2)O(3) substrates by plasma enhanced-chemical vapor deposition (PE-CVD), and characterized in their morphology and chemical composition by field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDXS) and X-ray photoelectron spectroscopy (XPS). For the first time, the sensing performances of PE-CVD ZnO nanosystems were tested in the detection of toxic/combustible gases (CO, H(2) and CH(4)), revealing very good responses already at moderate working temperatures. In particular, carbon monoxide and hydrogen detection was possible already at 100 degrees C. whereas methane sensing required a minimum temperature of 200 degrees C. The performances of the present ZnO nanosystems, that make them attractive candidates for technological applications, are presented and discussed in terms of their unique and controllable morphological organization. (C) 2010 Elsevier B.V. All rights reserved

    Plasma enhanced-CVD of undoped and fluorine-doped Co3O4 nanosystems for novel gas sensors

    No full text
    Co3 O4 -based nanosystems were prepared on polycrystalline Al2 O3 by plasma enhanced-chemical vapor deposition (PE-CVD), at temperatures ranging between 200 and 400 ◦ C. The use of two different precur- sors, Co(dpm)2 (dpm = 2,2,6,6-tetramethyl-3,5-heptanedionate) and Co(hfa)2 ·TMEDA (hfa = 1,1,1,5,5,5- hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′ ,N′ -tetramethylethylenediamine) enabled the synthesis of undoped and fluorine-doped Co3 O4 specimens, respectively. A thorough characterization of their prop- erties was performed by glancing incidence X-ray diffraction (GIXRD), atomic force microscopy (AFM), field emission-scanning electron microscopy (FE-SEM), secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS). For the first time, the gas sensing properties of such PE-CVD nanosystems were investigated in the detection of ethanol and acetone. The results show an appreciable response improvement upon doping and functional performances directly dependent on the fluorine content in the Co3 O4 system

    Epitaxial-like growth of Co 3O 4/ZnO quasi-1D nanocomposites

    No full text
    The development of quasi-1D Co3O4/ZnO nanocomposites by a two-step plasma enhanced-chemical vapor deposition (PE-CVD) process is presented. Arrays of < 001 > oriented ZnO nanorods were first grown on Si(100) and subsequently used as templates for the PE-CVD of Co3O4, whose amount was tailored as a function of deposition time. The obtained composites were thoroughly characterized by means of a multitechnique approach, involving field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDXS), micro-Raman and Fourier-transform infrared (FT-IR) spectroscopies, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), glancing incidence X-ray diffraction (GIXRD), and reflection high energy electron diffraction (RHEED). The use of moderate deposition temperatures (<= 300 degrees C), together with the unique activation provided by nonequilibrium plasmas, prevented state reactions between the two oxides and promoted Co3O4 growth on the tips of vertically aligned ZnO nanostructures. In particular, the resulting quasi-1D Co3O4/ZnO composites were characterized by an interface epitaxial-like relationship, an important issue for the development of semiconductor-based functional nanosystems. Photoinduced hydrophilic (PH) and photocatalytic (PC) performances of the present nanocomposites were preliminarily investigated, showing attractive results toward the possible fabrication of advanced smart materials

    MOCVD of ZnO Films from Bis(Ketoiminato)Zn(II) Precursors: Structure, Morphology and Optical Properties

    No full text
    Two closely related bis(ketoiminato) zinc precursors, which are air stable and possess favorable properties for metal-organic (MO)CVD, are successfully employed for the growth of ZnO films on silicon and borosilicate glass substrates at temperatures between 400 and 700\ub0C. The as-deposited films are investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), nuclear reaction analysis (NRA), as well as by UV-vis absorption spectroscopy and photoluminescence (PL) measurements. The structure, morphology, and composition of the as-grown films show a strong dependence on the substrate temperature. The formation of pure and (001)-oriented wurtzite-type stoichiometric ZnO is observed. PL measurements are performed both at room temperature and 77 K, revealing a defect-free emission of ZnO films

    F-Doped Co3O4 Photocatalysts for Sustainable H2 Generation from Water/Ethanol

    No full text
    p-Type Co3O4 nanostructured films are synthesized by a plasma-assisted process and tested in the photocatalytic production of H2 from water/ethanol solutions under both near-UV and solar irradiation. It is demonstrated that the introduction of fluorine into p-type Co3O4 results in a remarkable performance improvement with respect to the corresponding undoped oxide, highlighting F-doped Co3O4 films as highly promising systems for hydrogen generation. Notably, the obtained yields were among the best ever reported for similar semiconductor-based photocatalytic processes

    Plasma-assisted synthesis of Ag/ZnO nanocomposites: first example of photo-induced H2 production and sensing

    No full text
    Ag/ZnO nanocomposites were developed by a plasma-assisted approach. The adopted strategy exploits the advantages of Plasma Enhanced-Chemical Vapor Deposition (PE-CVD) for the growth of columnar ZnO arrays on Si(100) and Al2O3 substrates, in synergy with the infiltration power of the Radio Frequency (RF)-sputtering technique for the subsequent dispersion of different amounts of Ag nanoparticles (NPs). The resulting composites, both as-prepared and after annealing in air, were thoroughly characterized with particular attention on their morphological organization, structure and composition. For the first time, the above systems have been used as catalysts in the production of hydrogen by photo-reforming of alcoholic solutions, yielding a stable H2 evolution even by the sole use of simulated solar radiation. In addition, Ag/ZnO nanocomposites presented an excellent response in the gas-phase detection of H2, opening attractive perspectives for advanced technological applications
    corecore