4 research outputs found

    Who is whistling? Localizing and identifying phonating dolphins in captivity

    No full text
    Acoustic communication through whistles is well developed in dolphins. However, little is known on how dolphins are using whistles because localizing the sound source is not an easy task. In the present study, the hyperbola method was used to localize the sound source using a two-hydrophone array. A combined visual and acoustic method was used to determine the identity of the whistling dolphin. In an aquarium in Mexico City where two adult bottlenose dolphins were housed we recorded 946 whistles during 22 days. We found that a dolphin was located along the calculated hyperbola for 72.9% of the whistles, but only for 60.3% of the whistles could we determine the identity of the whistling dolphin. However, sometimes it was possible to use other cues to identify the whistling dolphin. It could be the animal that performed a behavior named "observation" at the time whistling occurred or, when a whistle was only recorded on one channel, the whistling dolphin could be the animal located closest to the hydrophone that captured the whistle. Using these cues, 15.4% of the whistles were further ascribed to either dolphin to obtain an overall identification efficiency of 75.7%. Our results show that a very simple and inexpensive acoustic setup can lead to a reasonable number of identifications of the captive whistling dolphin: this is the first study to report such a high rate of whistles identified to the free swimming, captive dolphin that produced them. Therefore, we have a data set with which we can investigate how dolphins are using whistles. This method can be applied in other aquaria where a small number of dolphins is house

    Review of Underwater and In-Air Sounds Emitted by Australian and Antarctic Marine Mammals

    Get PDF
    The study of marine soundscapes is a growing field of research. Recording hardware is becoming more accessible; there are a number of off-the-shelf autonomous recorders that can be deployed for months at a time; software analysis tools exist as shareware; rawor preprocessed recordings are freely and publicly available. However, what is missing are catalogues of commonly recorded sounds. Sounds related to geophysical events (e.g. earthquakes) and weather (e.g. wind and precipitation), to human activities (e.g. ships) and to marine animals (e.g. crustaceans, fish and marine mammals) commonly occur. Marine mammals are distributed throughout Australia's oceans and significantly contribute to the underwater soundscape. However, due to a lack of concurrent visual and passive acoustic observations, it is often not known which species produces which sounds. To aid in the analysis of Australian and Antarctic marine soundscape recordings, a literature review of the sounds made by marine mammals was undertaken. Frequency, duration and source level measurements are summarised and tabulated. In addition to the literature review, new marine mammal data are presented and include recordings from Australia of Omura's whales (Balaenoptera omurai), dwarf sperm whales (Kogia sima), common dolphins (Delphinus delphis), short-finned pilot whales (Globicephala macrorhynchus), long-finned pilot whales (G. melas), Fraser's dolphins (Lagenodelphis hosei), false killer whales (Pseudorca crassidens), striped dolphins (Stenella coeruleoalba) and spinner dolphins (S. longirostris), as well as the whistles and burst-pulse sounds of Australian pygmy killer whales (Feresa attenuata). To date, this is the most comprehensive acoustic summary for marine mammal species in Australian waters
    corecore