226 research outputs found
Probability distribution of the conductance at the mobility edge
Distribution of the conductance P(g) at the critical point of the
metal-insulator transition is presented for three and four dimensional
orthogonal systems. The form of the distribution is discussed. Dimension
dependence of P(g) is proven. The limiting cases and are
discussed in detail and relation in the limit is proven.Comment: 4 pages, 3 .eps figure
Ballistic transport in random magnetic fields with anisotropic long-ranged correlations
We present exact theoretical results about energetic and dynamic properties
of a spinless charged quantum particle on the Euclidean plane subjected to a
perpendicular random magnetic field of Gaussian type with non-zero mean. Our
results refer to the simplifying but remarkably illuminating limiting case of
an infinite correlation length along one direction and a finite but strictly
positive correlation length along the perpendicular direction in the plane.
They are therefore ``random analogs'' of results first obtained by A. Iwatsuka
in 1985 and by J. E. M\"uller in 1992, which are greatly esteemed, in
particular for providing a basic understanding of transport properties in
certain quasi-two-dimensional semiconductor heterostructures subjected to
non-random inhomogeneous magnetic fields
Critical statistics in a power-law random banded matrix ensemble
We investigate the statistical properties of the eigenvalues and eigenvectors
in a random matrix ensemble with . It is known that
this model shows a localization-delocalization transition (LDT) as a function
of the parameter . The model is critical at and the eigenstates
are multifractals. Based on numerical simulations we demonstrate that the
spectral statistics at criticality differs from semi-Poisson statistics which
is expected to be a general feature of systems exhibiting a LDT or `weak
chaos'.Comment: 4 pages in PS including 5 figure
Metal-insulator transitions in anisotropic 2d systems
Several phenomena related to the critical behaviour of non-interacting
electrons in a disordered 2d tight-binding system with a magnetic field are
studied. Localization lengths, critical exponents and density of states are
computed using transfer matrix techniques. Scaling functions of isotropic
systems are recovered once the dimension of the system in each direction is
chosen proportional to the localization length. It is also found that the
critical point is independent of the propagation direction, and that the
critical exponents for the localization length for both propagating directions
are equal to that of the isotropic system (approximately 7/3). We also
calculate the critical value of the scaling function for both the isotropic and
the anisotropic system. It is found that the isotropic value equals the
geometric mean of the two anisotropic values. Detailed numerical studies of the
density of states for the isotropic system reveals that for an appreciable
amount of disorder the critical energy is off the band center.Comment: 6 pages RevTeX, 6 figures included, submitted to Physical Review
Antilocalization in a 2D Electron Gas in a Random Magnetic Field
We construct a supersymmetric field theory for the problem of a
two-dimensional electron gas in a random, static magnetic field. We find a new
term in the free energy, additional to those present in the conventional
unitary sigma-model, whose presence relies on the long-range nature of the
disorder correlations. Under a perturbative renormalization group analysis of
the free energy, the new term contributes to the scaling function at one-loop
order and leads to antilocalization.Comment: 4 pages, RevTe
Three-Dimensional Quantum Percolation Studied by Level Statistics
Three-dimensional quantum percolation problems are studied by analyzing
energy level statistics of electrons on maximally connected percolating
clusters. The quantum percolation threshold \pq, which is larger than the
classical percolation threshold \pc, becomes smaller when magnetic fields are
applied, i.e., \pq(B=0)>\pq(B\ne 0)>\pc. The critical exponents are found to
be consistent with the recently obtained values of the Anderson model,
supporting the conjecture that the quantum percolation is classified onto the
same universality classes of the Anderson transition. Novel critical level
statistics at the percolation threshold is also reported.Comment: to appear in the May issue of J. Phys. Soc. Jp
Anomalous diffusion at the Anderson transitions
Diffusion of electrons in three dimensional disordered systems is
investigated numerically for all the three universality classes, namely,
orthogonal, unitary and symplectic ensembles. The second moment of the wave
packet at the Anderson transition is shown to behave as . From the temporal autocorrelation function , the
fractal dimension is deduced, which is almost half the value of space
dimension for all the universality classes.Comment: Revtex, 2 figures, to appear in J. Phys. Soc. Jpn.(1997) Fe
Level spacings at the metal-insulator transition in the Anderson Hamiltonians and multifractal random matrix ensembles
We consider orthogonal, unitary, and symplectic ensembles of random matrices
with (1/a)(ln x)^2 potentials, which obey spectral statistics different from
the Wigner-Dyson and are argued to have multifractal eigenstates. If the
coefficient is small, spectral correlations in the bulk are universally
governed by a translationally invariant, one-parameter generalization of the
sine kernel. We provide analytic expressions for the level spacing distribution
functions of this kernel, which are hybrids of the Wigner-Dyson and Poisson
distributions. By tuning the single parameter, our results can be excellently
fitted to the numerical data for three symmetry classes of the
three-dimensional Anderson Hamiltonians at the metal-insulator transition,
previously measured by several groups using exact diagonalization.Comment: 12 pages, 8 figures, REVTeX. Additional figure and text on the level
number variance, to appear in Phys.Rev.
Critical Reflections on Methodological Challenge in Arts and Dementia Evaluation and Research
Methodological rigour, or its absence, is often a focus of concern for the emerging field of evaluation and research around arts and dementia. However, this paper suggests that critical attention should also be paid to the way in which individual perceptions, hidden assumptions and underlying social and political structures influence methodological work in the field. Such attention will be particularly important for addressing methodological challenges relating to contextual variability, ethics, value judgement, and signification identified through a literature review on this topic. Understanding how, where and when evaluators and researchers experience such challenges may help to identify fruitful approaches for future evaluation.
This paper is based upon a presentation on the subject given at the First International Research Conference on the Arts and Dementia: Theory, Methodology and Evidence on 9 March 2017
- …