27 research outputs found

    The Formation of an Anti-Cancer Complex Under Simulated Gastric Conditions

    Get PDF
    This is the author’s version of a work that was accepted for publication in Food Digestion. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Food Digestion, 2013, 4(1), 7-18. The final publication is available at http://link.springer.com, DOI: 10.1007/s13228-012-0030-0.peer-reviewedA potent anti-cancer complex has previously been formed from two major components of milk. Human/bovine α-lactalbumin made lethal to tumour cells (H/BAMLET) is a protein–fatty acid complex that has been produced using the whey protein α-lactalbumin (α-LA) and the fatty acid oleic acid (OA). It was shown that it possesses selective anti-tumour and anti-microbial activity, which was first identified in acidic fractions of human breast milk. The aim of this study was to determine whether the two components would form a bioactive complex during simulated gastric (GI) transit. Results showed that a complex consisting of α-LA and OA is formed as the protein unfolds under acidic conditions and subsequently refolds upon pH increase. Analysis of this complex using Nuclear Magnetic Resonance and Fourier Transform Infra-Red (FTIR) spectroscopies estimated a stoichiometry of 4.1 and 4.4 oleic acids per mole of protein, respectively. FTIR and fluorescence spectroscopies showed that the structure was similar to that of BAMLET. Cytotoxicity testing against cancer cell line U937 cells showed that the complex had an LC50 value of 14.08 μM compared to 9.15 μM for BAMLET. These findings suggest that a BAMLET-like complex may be formed under the tested in vitro GI conditions.Department of Agriculture, Food and Marine, Ireland - Food Institutional Research Measure (project number 08RDTMFRC650); Teagasc Walsh Fellowship scheme; COST Action FA 1005, Infogest

    Savinase, the most suitable enzyme for releasing peptides from lentil (Lens culinaris var. Castellana) protein concentrates with multifunctional properties

    Get PDF
    The aim of this study was to produce multifunctional hydrolysates from lentil protein concentrates. Four different proteases (Alcalase, Savinase, Protamex, and Corolase 7089) and different hydrolysis times were evaluated for their degree and pattern of proteolysis and their angiotensin I-converting enzyme (ACE) inhibitory and antioxidant activities. Alcalase and Savinase showed the highest proteolytic effectiveness (P ¿ 0.05), which resulted in higher yield of peptides. The hydrolysate produced by Savinase after 2 h of hydrolysis (S2) displayed the highest ACE-inhibitory (IC50 = 0.18 mg/mL) and antioxidant activity (1.22 ¿mol of Trolox equiv/mg of protein). Subsequent reverse-phase HPLC-tandem mass spectrometric analysis of 3 kDa permeates of S2 showed 32 peptides, mainly derived from convicilin, vicilin, and legumin containing bioactive amino acid sequences, which makes them potential contributors to ACE-inhibitory and antioxidant activities detected. The ACE-inhibitory and antioxidant activities of S2 were significantly improved after in vitro gastrointestinal digestion (P ¿ 0.05). Multifunctional hydrolysates could encourage value-added utilization of lentil proteins for the formulation of functional foods and nutraceuticals. © 2014 American Chemical Society.This work was funded by the AGL2010-16310 project from the MINECO (Ministerio de Economía y Competitividad from Spain).Peer Reviewe
    corecore