78 research outputs found

    A Plug-and-Play Approach for the De Novo Generation of Dually Functionalized Bispecifics

    Get PDF
    Diseases are multifactorial, with redundancies and synergies between various pathways. However, most of the antibody-based therapeutics on the market interact with only one target, thus limiting their efficacy. The targeting of multiple epitopes could improve the therapeutic index of treatment and counteract mechanisms of resistance. To this effect, a new class of therapeutics has emerged: bispecific antibodies. Bispecific formation using chemical methods is rare and low-yielding and/or requires a large excess of one of the two proteins to avoid homodimerization and heterogeneity. In order for chemically prepared bispecifics to deliver their full potential, high-yielding, modular, and reliable cross-linking technologies are required. Herein, we describe a novel approach not only for the rapid and high-yielding chemical generation of bispecific antibodies from native antibody fragments, but also for the site-specific dual functionalization of the resulting bioconjugates. Based on orthogonal clickable functional groups, this strategy enables the assembly of functionalized bispecifics with controlled loading in a modular and convergent manner

    Chemical generation of checkpoint inhibitory T cell engagers for the treatment of cancer

    Get PDF
    Bispecific T cell engagers (BiTEs), a subset of bispecific antibodies (bsAbs), can promote a targeted cancer cellā€™s death by bringing it close to a cytotoxic T cell. Checkpoint inhibitory T cell engagers (CiTEs) comprise a BiTE core with an added immunomodulatory protein, which serves to reverse cancer-cell immune-dampening strategies, improving efficacy. So far, protein engineering has been the main approach to generate bsAbs and CiTEs, but improved chemical methods for their generation have recently been developed. Homogeneous fragment-based bsAbs constructed from fragment antigen-binding regions (Fabs) can be generated using click chemistry. Here we describe a chemical method to generate biotin-functionalized three-protein conjugates, which include two CiTE molecules, one containing an anti-PD-1 Fab and the other containing an immunomodulatory enzyme, Salmonella typhimurium sialidase. The CiTEsā€™ efficacy was shown to be superior to that of the simpler BiTE scaffold, with the sialidase-containing CiTE inducing substantially enhanced T cell-mediated cytotoxicity in vitro. The chemical method described here, more generally, enables the generation of multi-protein constructs with further biological applications. [Figure not available: see fulltext.

    Absorption Cross Sections of NH_3, NH_2D, NHD_2, and ND_3 in the Spectral Range 140-220 nm and Implications for Planetary Isotopic Fractionation

    Get PDF
    Cross sections for photoabsorption of NH_3, NH_2D, NHD_2, and ND_3 in the spectral region 140-220 nm were determined at ~298 K using synchrotron radiation. Absorption spectra of NH_2D and NHD_2 were deduced from spectra of mixtures of NH_3 and ND_3, of which the equilibrium concentrations for all four isotopologues obey statistical distributions. Cross sections of NH_2D, NHD_2, and ND_3 are new. Oscillator strengths, an integration of absorption cross sections over the spectral lines, for both A ā† X and B ā† X systems of NH_3 agree satisfactorily with previous reports; values for NH_2D, NHD_2, and ND_3 agree with quantum chemical predictions. The photolysis of NH_3 provides a major source of reactive hydrogen in the lower stratosphere and upper troposphere of giant planets such as Jupiter. Incorporating the measured photoabsorption cross sections of NH_3 and NH_2D into the Caltech/JPL photochemical diffusive model for the atmosphere of Jupiter, we find that the photolysis efficiency of NH_2D is lower than that of NH_3 by as much as 30%. The D/H ratio in NH_2D/NH_3 for tracing the microphysics in the troposphere of Jupiter is also discussed

    A novel thiol-labile cysteine protecting group for peptide synthesis based on a pyridazinedione (PD) scaffold

    Get PDF
    Herein we report a thiol-labile cysteine protecting group based on an unsaturated pyridazinedione (PD) scaffold. We establish compatibility of the PD in conventional solid phase peptide synthesis (SPPS), showcasing this in the on-resin synthesis of biologically relevant oxytocin. Furthermore, we establish the applicability of the PD protecting group towards both microwave-assisted SPPS and native chemical ligation (NCL) in a model system

    Leucine-rich alpha-2-glycoprotein 1 (LRG1) as a novel ADC target

    Get PDF
    Leucine-rich alpha-2-glycoprotein 1 (LRG1) is present abundantly in the microenvironment of many tumours where it contributes to vascular dysfunction, which impedes the delivery of therapeutics. In this work we demonstrate that LRG1 is predominantly a non-internalising protein. We report the development of a novel antibodyā€“drug conjugate (ADC) comprising the anti-LRG1 hinge-stabilised IgG4 monoclonal antibody Magacizumab coupled to the anti-mitotic payload monomethyl auristatin E (MMAE) via a cleavable dipeptide linker using the site-selective disulfide rebridging dibromopyridazinedione (diBrPD) scaffold. It is demonstrated that this ADC retains binding post-modification, is stable in serum and effective in in vitro cell studies. We show that the extracellular LRG1-targeting ADC provides an increase in survival in vivo when compared against antibody alone and similar anti-tumour activity when compared against standard chemotherapy, but without undesired side-effects. LRG1 targeting through this ADC presents a novel and effective proof-of-concept en route to improving the efficacy of cancer therapeutics

    A Plug-and-Play Platform for the Formation of Trifunctional Cysteine Bioconjugates that also Offers Control over Thiol Cleavability

    Get PDF
    Linkers that enable the site-selective synthesis of chemically modified proteins are of great interest to the field of chemical biology. Homogenous bioconjugates often show advantageous pharmacokinetic profiles and consequently increased efficacy in vivo. Cysteine residues have been exploited as a route to site-selectively modify proteins, and many successfully approved therapeutics make use of cysteine directed conjugation reagents. However, commonly used linkers, including maleimideā€“thiol conjugates, are not stable to the low concentrations of thiol present in blood. Furthermore, only a few cysteine-targeting reagents enable the site-selective attachment of multiple functionalities: a useful tool in the fields of theranostics and therapeutic blood half-life extension. Herein, we demonstrate the application of the pyridazinedione motif to enable site-selective attachment of three functionalities to a protein bearing a single cysteine residue. Extending upon previously documented dual modification work, here we demonstrate that by exploiting a bromide leaving group as an additional reactive point on the pyridazinedione scaffold, a thiol or aniline derivative can be added to a protein, post-conjugation. Thiol cleavability appraisal of the resultant Cā€“S and Cā€“N linked thio-bioconjugates demonstrated Cā€“S functionalized linkers to be cleavable and Cā€“N functionalized linkers to be noncleavable when incubated in an excess of glutathione. The plug-and-play trifunctional platform was exemplified by attaching clinically relevant motifs: biotin, fluorescein, a polyethylene glycol chain, and a model peptide. This platform provides a rare opportunity to combine up to three functionalities on a protein in a site-selective fashion. Furthermore, by selecting the use of a thiol or an amine for functionalization, we provide unique control over linker cleavability toward thiols, allowing this novel linker to be applied in a range of physiological environments

    Absorption cross sections of HCl and DCl at 135-232 nanometers: implications for photodissociation on Venus

    Get PDF
    Cross sections for photoabsorption of HCl and DCl are determined in the spectral region of 135-232 nm using radiation from a synchrotron light source. At wavelengths near the onset of absorption (Ī» > 200 nm), cross sections of HCl are approximately 5-10 times larger than those of DCl. These data are used to calculate rates of photodissociation of HCl and DCl in the Venusian atmosphere. For the entire wavelength region measured, the rate of photodissociation of DCl is only 16% that of HCl. The difference in rates of photodissociation contributes to the exceptionally large [D]/[H] ratio of the Venusian atmosphere

    Photoinduced Photosensitizer-Antibody Conjugates Kill HIV Env-Expressing Cells, Also Inactivating HIV.

    Full text link
    HIV-infected cells persist for decades in patients administered with antiretroviral therapy (ART). Meanwhile, an alarming surge in drug-resistant HIV viruses has been occurring. Addressing these issues, we propose the application of photoimmunotherapy (PIT) against not only HIV Env-expressing cells but also HIV. Previously, we showed that a human anti-gp41 antibody (7B2) conjugated to cationic or anionic photosensitizers (PSs) could specifically target and kill the HIV Env-expressing cells. Here, our photolysis studies revealed that the binding of photoimmunoconjugates (PICs) on the membrane of HIV Env-expressing cells is sufficient to induce necrotic cell death due to physical damage to the membrane by singlet oxygen, which is independent of the type of PSs. This finding persuaded us to study the virus photoinactivation of PICs using two HIV-1 strains, X4 HIV-1 NL4-3 and JR-CSF virus. We observed that the PICs could destroy the viral strains, probably via physical damage on the HIV envelope. In conclusion, we report the application of PIT as a possible dual-tool for HIV immunotherapy and ART by killing HIV-expressing cells and cell-free HIV, respectively

    One-pot thiolā€“amine bioconjugation to maleimides: simultaneous stabilisation and dual functionalisation

    Get PDF
    Maleimide chemistry is widely used in the site-selective modification of proteins. However, hydrolysis of the resultant thiosuccinimides is required to provide robust stability to the bioconjugates. Herein, we present an alternative approach that affords simultaneous stabilisation and dual functionalisation in a one pot fashion. By consecutive conjugation of a thiol and an amine to dibromomaleimides, we show that aminothiomaleimides can be generated extremely efficiently. Furthermore, the amine serves to deactivate the electrophilicity of the maleimide, precluding further reactivity and hence generating stable conjugates. We have applied this conjugation strategy to peptides and proteins to generate stabilised trifunctional conjugates. We propose that this stabilisation-dual modification strategy could have widespread use in the generation of diverse conjugates

    Use of pyridazinediones as extracellular cleavable linkers through reversible cysteine conjugation

    Get PDF
    Herein we report a retro-Michael deconjugation pathway of thiol-pyridazinedione linked protein bioconjugates to provide a novel cleavable linker technology. We demonstrate that the novel pyridazinedione linker does not suffer from off-target modification with blood thiols (e.g., glutathione, human serum albumin (HSA)), which is in sharp contrast to an analogous maleimide linker
    • ā€¦
    corecore