36 research outputs found

    Re-engineering an alphoid-HAC-based vector to enable high-throughput analyses of gene function

    Get PDF
    Human artificial chromosome (HAC)-based vectors represent an alternative technology for gene delivery and expression with a potential to overcome the problems caused by the use of viral-based vectors. The recently developed alphoid(tetO)-HAC has an advantage over other HAC vectors because it can be easily eliminated from cells by inactivation of the HAC kinetochore via binding of tTS chromatin modifiers to its centromeric tetO sequences. This provides unique control for phenotypes induced by genes loaded into the alphoid(tetO)-HAC. However, inactivation of the HAC kinetochore requires transfection of cells by a retrovirus vector, a step that is potentially mutagenic. Here, we describe an approach to re-engineering the alphoid(tetO)-HAC that allows verification of phenotypic changes attributed to expression of genes from the HAC without a transfection step. In the new HAC vector, a tTS-EYFP cassette is inserted into a gene-loading site along with a gene of interest. Expression of the tTS generates a self-regulating fluctuating heterochromatin on the alphoid(tetO)-HAC that induces fast silencing of the genes on the HAC without significant effects on HAC segregation. This silencing of the HAC-encoded genes can be readily recovered by adding doxycycline. The newly modified alphoid(tetO)-HAC-based system has multiple applications in gene function studies

    De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications

    Full text link

    Generation of a conditionally self-eliminating HAC gene delivery vector through incorporation of a tTAVP64 expression cassette

    Get PDF
    Human artificial chromosome (HAC)-based vectors represent an alternative technology for gene delivery and expression with a potential to overcome the problems caused by virus-based vectors. The recently developed alphoid(tetO)-HAC has an advantage over other HAC vectors because it can be easily eliminated from cells by inactivation of the HAC kinetochore via binding of chromatin modifiers, tTA or tTS, to its centromeric tetO sequences. This provides a unique control for phenotypes induced by genes loaded into the HAC. The alphoid(tetO)-HAC elimination is highly efficient when a high level of chromatin modifiers as tetR fusion proteins is achieved following transfection of cells by a retrovirus vector. However, such vectors are potentially mutagenic and might want to be avoided under some circumstances. Here, we describe a novel system that allows verification of phenotypic changes attributed to expression of genes from the HAC without a transfection step. We demonstrated that a single copy of tTA(VP64) carrying four tandem repeats of the VP16 domain constitutively expressed from the HAC is capable to generate chromatin changes in the HAC kinetochore that are not compatible with its function. To adopt the alphoid(tetO)-HAC for routine gene function studies, we constructed a new TAR-BRV- tTA(VP64) cloning vector that allows a selective isolation of a gene of interest from genomic DNA in yeast followed by its direct transfer to bacterial cells and subsequent loading into the loxP site of the alphoid(tetO)-HAC in hamster CHO cells from where the HAC may be MMCT-transferred to the recipient human cells

    Gene therapy progress and prospects: Episomally maintained self-replicating systems

    No full text

    Use of a human minichromosome as a cloning and expression vector for mammalian cells

    No full text
    A natural human minichromosome (MC1) derived from human chromosome 1 was shown to be linear and to have a size of 5.5 Mb. Human IL-2 cDNA and the neo gene were co-transfected into a MC1-containing human-CHO hybrid cell line. Integration of the foreign genes was directed to the pericentromeric region of MC1 by co-transfection of chromosome 1-specific satellite 2 DNA. A number of G418-resistant transfectants were obtained and expression of IL-2 was determined. FISH analysis demonstrated co-localization in the minichromosome of the IL-2 gene and of the satellite 2 DNA. An IL-2-producing clone was used in cell fusion experiments with IL-2-dependent murine CTLL cells to generate CTLL-human hybrids containing the modified minichromosome (MC1-IL2). The hybrids were able to grow in medium lacking IL-2 for 17 mean population doublings (MPD), indicating that expression of the cytokine was sufficient to relieve the IL-2 dependence of CTLL proliferation, Endogenous IL-2 production delayed the onset of apoptosis in the IL-2-dependent CTLL cells. Mitotic stability was shown to be 100% in the human-CHO hybrids and 97% per MPD in CTLL cells. These results demonstrate that a natural human minichromosome can be utilized as a cloning and expression vector for mammalian cells and that the MC1 minichromosome can be engineered to deliver IL-2 to two types of cells, fibroblasts and lymphocytes

    The Mec1p and Tel1p checkpoint kinases allow humanized yeast to tolerate chronic telomere dysfunctions by suppressing telomere fusions.

    No full text
    In this work we report that budding yeasts carrying human-type telomeric repeats at their chromosome termini show a chronic activation of the Rad53-dependent DNA damage checkpoint pathway and a G2/M cell cycle delay. Furthermore, in the absence of either TEL1/ATM or MEC1/ATR genes, which encodes phosphatidylinositol 3-kinase-related kinases (PIKKs), we detected telomere fusions, whose appearance correlates with a reduced cell viability and a high rate of genome instability. Based on sequence analysis, telomere fusions occurred primarily between ultrashort telomeres. Microcolony formation assays argue against the possibility that fusion-containing cells are eliminated by PIKK-dependent signalling
    corecore