284 research outputs found

    Particulate organic matter in the sea: The composition conundrum

    Get PDF
    As organic matter produced in the euphotic zone of the ocean sinks through the mesopelagic zone, its composition changes from one that is easily characterized by standard chromatographic techniques to one that is not. The material not identified at the molecular level is called "uncharacterized". Several processes account for this transformation of organic matter: aggregation/disaggregation of particles resulting in incorporation of older and more degraded material; recombination of organic compounds into geomacromolecules; and selective preservation of specific biomacromolecules. Furthermore, microbial activities may introduce new cell wall or other biomass material that is not easily characterized, or they may produce such material as a metabolic product. In addition, black carbon produced by combustion processes may compose a fraction of the uncharacterized organic matter, as it is not analyzed in standard biochemical techniques. Despite these poorly-defined compositional changes that hinder chemical identification, the vast majority of organic matter in sinking particles remains accessible to and is ultimately remineralized by marine microbes

    Extracellular enzyme activity in anaerobic bacterial cultures: Evidence of pullulanase activity among mesophilic marine bacteria

    Get PDF
    The extracellular enzymatic activity of a mixed culture of anaerobic marine bacteria enriched on pullulan [α(1,6)-linked maltotriose units] was directly assessed with a combination of gel permeation chromatography (GPC) and nuclear magnetic resonance spectroscopy (NMR). Hydrolysis products of pullulan were separated by GPC into three fractions with molecular weights of ≥10,000, -5,000, and ≤1,200. NMR spectra of these fractions demonstrated that pullulan was rapidly and specifically hydrolyzed at α(1,6) linkages by pullulanase enzymes, most likely type II pullulanase. Although isolated pullulanase enzymes have been shown to hydrolyze pullulan completely to maltotriose (S. H. Brown, H. R. Costantino, and R. M. Kelly. Appl. Environ. Microbiol. 56:1985-1991, 1990; M. Klingeberg, H. Hippe, and G. Antranikian, FEMS Microbiol. Lett. 69:145-152, 1990; R. Koch, P. Zablowski, A. Spreinat, and G. Antranikian, FEMS Microbiol. Lett. 71:21-26, 1990), the smallest carbohydrate detected in the bacterial cultures consisted of two maltotriose units linked through one α(1,6) linkage. Either the final hydrolysis step was closely linked to substrate uptake, or specialized porins similar to maltoporin might permit direct transport of large oligosaccharides into the bacterial cell. This is the first report of pullulanase activity among mesophilic marine bacteria. The combination of GPC and NMR could easily be used to assess other types of extracellular enzyme activity in bacterial cultures

    Substantial Carbohydrate Hydrolase Activities in the Water Column of the Guaymas Basin (Gulf of California)

    Get PDF
    The Guaymas Basin spreading center situated in the Gulf of California is characterized by a thick layer of organic-rich sediments that are thermally altered by hydrothermal fluids, thereby providing a bottom water source of dissolved organic carbon (DOC) to the water column. The potential for heterotrophic microbial communities in the water column to metabolize this organic matter source has not yet been investigated, however. In order to assess heterotrophic potential in the water column of the Guaymas Basin, we measured the activities of carbohydrate-hydrolyzing extracellular enzymes at the chlorophyll maximum, the oxygen minimum, the deep-water turbidity plume, and bottom waters. These measurements were carried out using water obtained from repeat CTD casts over the course of a week, and from bottom water collected by HOV Alvin at hydrothermally active areas with extensive chemosynthetic microbial mats. Repeat measurements at subsurface depths were very comparable across sampling dates and CTD casts. Exo-acting (terminal-unit-cleaving) monosaccharide hydrolase activities were typically higher in deeper waters than in surface waters, despite colder temperatures. In bottom water, the spectrum of endo-acting (mid-chain-cleaving) polysaccharide hydrolase activities was broader than at shallower depths. The high enzyme activities in Guaymas Basin bottom waters indicate an unusually active heterotrophic community that is responding to influx of DOC and nutrients into bottom waters from the hydrothermally affected sediments, or to the availability of chemosynthetically produced biomass

    Heterotrophic extracellular enzymatic activities in the atlantic ocean follow patterns across spatial and depth regimes

    Get PDF
    Heterotrophic microbial communities use extracellular enzymes to initialize degradation of high molecular weight organic matter in the ocean. The potential of microbial communities to access organic matter, and the resultant rates of hydrolysis, affect the efficiency of the biological pump as well as the rate and location of organic carbon cycling in surface and deep waters. In order to investigate spatial- and depth-related patterns in microbial enzymatic capacities in the ocean, we measured hydrolysis rates of six high-molecular-weight polysaccharides and two low-molecular-weight substrate proxies at sites spanning 38°S to 10°N in the Atlantic Ocean, and at six depths ranging from surface to bottom water. In surface to upper mesopelagic waters, the spectrum of substrates hydrolyzed followed distinct patterns, with hydrolytic assemblages more similar vertically within a single station than at similar depths across multiple stations. Additionally, the proportion of total hydrolysis occurring above the pycnocline, and the spectrum of substrates hydrolyzed in mesopelagic and deep waters, was positively related to the strength of stratification at a site, while other physichochemical parameters were generally poor predictors of the measured hydrolysis rates. Spatial as well as depth-driven constraints on heterotrophic hydrolytic capacities result in broad variations in potential carbon-degrading activity in the ocean. The spectrum of enzymatic capabilities and rates of hydrolysis in the ocean, and the proportion of organic carbon hydrolyzed above the permanent thermocline, may influence the efficiency of the biological pump and net carbon export across distinct latitudinal and depth regions

    Enhanced protein and carbohydrate hydrolyses in plume-associated deepwaters initially sampled during the early stages of the Deepwater Horizon oil spill

    Get PDF
    Oil spilled in the ocean can be biodegraded through a cascade of microbial processes, including direct degradation of petroleum-derived hydrocarbons, as well as subsequent degradation of transformation byproducts and exopolymeric substances (EPS) that are produced by microbes to emulsify hydrocarbons and facilitate access to oil. In the aftermath of the Deepwater Horizon oil spill, we measured enzymatic hydrolysis of carbohydrates and peptides in waters initially collected from within and outside of the deep hydrocarbon plume. The rationale is that the presence of EPS and other transformation byproducts in the deepwater plume may have enhanced heterotrophic bacterial metabolism in the cold deepwater environment. Our investigation targets carbohydrate and peptide hydrolase activities as indicators of the degradation of high molecular weight organic matter, including EPS substrates. Deepwater associated with the hydrocarbon plume revealed higher peptidase activity compared to non-plume deepwater samples. Enzymatic hydrolysis of carbohydrates, measured by the means of exo-acting enzyme activity (β-glucosidase), was also more rapid inside compared to outside the deepwater plume. Hydrolysis rates and patterns of endo-acting polysaccharide hydrolases, measured by means of distinct polysaccharide substrates in longer-term incubations, demonstrated more rapid plume-associated hydrolysis of two (laminarin and xylan) of the three substrates hydrolyzed in deepwaters. Our results indicate that microbial communities associated with the deepwater plume exhibited 'primed' responses to addition of specific substrates, which may structurally resemble components found in bacterial EPS and oil degradation byproducts. Bacterial transformation of oil-degradation byproducts thus likely contributed to microbial growth and respiration measured inside the deepwater plume

    Microbial enzymatic activity and secondary production in sediments affected by the sedimentation pulse following the Deepwater Horizon oil spill

    Get PDF
    A large fraction of the spilled oil from the Deepwater Horizon (DwH) blowout in April 2010 reached the seafloor via sinking oil aggregates (oil snow) in a massive sedimentation that continued until late summer 2010 ("Dirty blizzard"). We measured heterotrophic microbial metabolic rates as well as porewater and sedimentary geochemical parameters at sites proximate to and distant from the wellhead to investigate microbial responses to the "Dirty Blizzard". Lipase activity and rates of bacterial protein production were highest and leucine-aminopeptidase activity was lowest in 0-2 cm sediment layers at the sites proximate to the wellhead. These results suggest that the presence of the oil snow stimulated benthic microbial enzymatic hydrolysis of oil-derived organic matter that was depleted in peptide substrates at the time of our sampling. The strong gradients in porewater DOC, NH4+, and HPO43- concentrations in the upper 6 cm of the sediments near the wellhead likewise indicate elevated heterotrophic responses to recently-sedimented organic matter. In addition to enhanced microbial activities in the 0-2 cm sediment layers, we found peaks of total organic carbon and elevated microbial metabolic rates down to 10 cm at the sites closest to the wellhead. Our results indicate distinct benthic metabolic responses of heterotrophic microbial communities, even three months after the ending of the "Dirty Blizzard". Compared to other deep-sea environments, however, metabolic rates associated with the recently deposited particulate matter around the wellhead were only moderately enhanced. Oil contaminants at the seafloor may therefore have prolonged residence times, enhancing the potential for longer-term ecological consequences in deep-sea environments

    A mechanistic microbial underpinning for the size-reactivity continuum of dissolved organic carbon degradation

    Get PDF
    The reservoir of dissolved organic carbon (DOC) in the ocean is modified by multiple input and removal processes. Incubation experiments as well as measurements of oceanic DOC have demonstrated that the high molecular weight (HMW) fraction of DOC typically has a younger radiocarbon age and is more reactive biologically than the low molecular weight (LMW) fraction of DOC. These observations have been summarized as a ‘size-reactivity continuum’ of DOC reactivity, but mechanistic explanations for these observations have been lacking. Here we describe how our recent discovery of ‘selfish’ HMW organic matter uptake among bacteria in surface ocean waters may help explain the rapid removal of HMW DOC. ‘Selfish’ substrate uptake by bacteria encompasses rapid binding and partial hydrolysis of intact polysaccharides on the outer membrane of bacteria, seamlessly followed by the transport of large oligosaccharide fragments into the periplasm with little to no loss of LMW hydrolysis products. ‘Selfish’ bacteria therefore process HMW substrates in a manner distinct from bacteria that carry out extracellular hydrolysis that yields LMW hydrolysis products in the environment. Recognition of the presence and prevalence of selfish bacteria in the ocean has profound implications for carbon flow – the source and quantity of LMW substrates made available to non-extracellular-enzyme producing bacteria – as well as for efforts to model and measure bacterial interactions during organic matter degradation. This discovery also highlights the importance of targeted substrate binding and uptake as key (often understudied) factors in geochemical investigations of microbially driven carbon cycling in the ocean. We conclude with some speculative thoughts about the factors that may determine the prevalence of selfish substrate uptake in the environment

    Structure and function of high Arctic pelagic, particle-associated and benthic bacterial communities

    Get PDF
    Arctic marine microbes are affected by environmental changes that may ultimately influence their functions in carbon cycling. Here, we investigated in concert the structure and enzymatic activities of pelagic, particle-associated and benthic bacterial communities in the central Arctic Ocean, and used these data to evaluate microbial structure–function relationships. Our findings showed influences of hydrographic conditions and particle association on community composition, and sharp pelagic-benthic contrasts. In addition to community compositional differences, regional and depth-related patterns in enzymatic activities were observed. Peptide hydrolysis rates were highest in surface waters, especially at ice-free and first year ice-covered regions, and decreased with depth. While the range of hydrolysed polysaccharides showed varying geographic patterns, particles often showed a wider spectrum of polysaccharide hydrolase activities. Summed benthic peptidase rates differed across stations but showed similar proportions of individual enzyme activities. Analysing for potential linkages between structure and function after subtracting the effect of environmental conditions revealed no direct link, indicating functional redundancy to carry out peptide hydrolysis among pelagic microbes. Thus, while community composition and activities are influenced by environmental conditions, bacterial functional redundancy suggests that compositional shifts – in response to the changing Arctic – may have complex and less predictable functional consequences than previously anticipated

    Latitudinal Gradients in Degradation of Marine Dissolved Organic Carbon

    Get PDF
    Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO2 reservoir, such a change could profoundly affect the global carbon cycle
    • …
    corecore