694 research outputs found

    A modification of the Chen-Nester quasilocal expressions

    Full text link
    Chen and Nester proposed four boundary expressions for the quasilocal quantities using the covariant Hamiltonian formalism. Based on these four expressions, there is a simple generalization that one can consider, so that a two parameter set of boundary expressions can be constructed. Using these modified expressions, a nice result for gravitational energy-momentum can be obtained in holonomic frames.Comment: 11 page

    Late time tails of the massive vector field in a black hole background

    Full text link
    We investigate the late-time behavior of the massive vector field in the background of the Schwarzschild and Schwarzschild-de Sitter black holes. For Schwarzschild black hole, at intermediately late times the massive vector field is represented by three functions with different decay law Ψ0t(+3/2)sinmt\Psi_{0} \sim t^{-(\ell + 3/2)} \sin{m t}, Ψ1t(+5/2)sinmt\Psi_{1} \sim t^{-(\ell + 5/2)} \sin{m t}, Ψ2t(+1/2)sinmt\Psi_{2} \sim t^{-(\ell + 1/2)} \sin{m t}, while at asymptotically late times the decay law Ψt5/6sin(mt)\Psi \sim t^{-5/6} \sin{(m t)} is universal, and does not depend on the multipole number \ell. Together with previous study of massive scalar and Dirac fields where the same asymptotically late-time decay law was found, it means, that the asymptotically late-time decay law t5/6sin(mt)\sim t^{-5/6} \sin{(m t)} \emph{does not depend} also \emph{on the spin} of the field under consideration. For Schwarzschild-de Sitter black holes it is observed two different regimes in the late-time decay of perturbations: non-oscillatory exponential damping for small values of mm and oscillatory quasinormal mode decay for high enough mm. Numerical and analytical results are found for these quasinormal frequencies.Comment: one author and new material are adde

    Wave localization in binary isotopically disordered one-dimensional harmonic chains with impurities having arbitrary cross section and concentration

    Full text link
    The localization length for isotopically disordered harmonic one-dimensional chains is calculated for arbitrary impurity concentration and scattering cross section. The localization length depends on the scattering cross section of a single scatterer, which is calculated for a discrete chain having a wavelength dependent pulse propagation speed. For binary isotopically disordered systems composed of many scatterers, the localization length decreases with increasing impurity concentration, reaching a mimimum before diverging toward infinity as the impurity concentration approaches a value of one. The concentration dependence of the localization length over the entire impurity concentration range is approximated accurately by the sum of the behavior at each limiting concentration. Simultaneous measurements of Lyapunov exponent statistics indicate practical limits for the minimum system length and the number of scatterers to achieve representative ensemble averages. Results are discussed in the context of future investigations of the time-dependent behavior of disordered anharmonic chains.Comment: 8 pages, 10 figures, submitted to PR

    Mode-sum regularization of the scalar self-force: Formulation in terms of a tetrad decomposition of the singular field

    Get PDF
    We examine the motion in Schwarzschild spacetime of a point particle endowed with a scalar charge. The particle produces a retarded scalar field which interacts with the particle and influences its motion via the action of a self-force. We exploit the spherical symmetry of the Schwarzschild spacetime and decompose the scalar field in spherical-harmonic modes. Although each mode is bounded at the position of the particle, a mode-sum evaluation of the self-force requires regularization because the sum does not converge: the retarded field is infinite at the position of the particle. The regularization procedure involves the computation of regularization parameters, which are obtained from a mode decomposition of the Detweiler-Whiting singular field; these are subtracted from the modes of the retarded field, and the result is a mode-sum that converges to the actual self-force. We present such a computation in this paper. There are two main aspects of our work that are new. First, we define the regularization parameters as scalar quantities by referring them to a tetrad decomposition of the singular field. Second, we calculate four sets of regularization parameters (denoted schematically by A, B, C, and D) instead of the usual three (A, B, and C). As proof of principle that our methods are reliable, we calculate the self-force acting on a scalar charge in circular motion around a Schwarzschild black hole, and compare our answers with those recorded in the literature.Comment: 38 pages, 2 figure

    Spatial effects in superradiant Rayleigh scattering from Bose-Einstein condensates

    Full text link
    We present a detailed theoretical analysis of superradiant Rayleigh scattering from atomic Bose-Einstein condensates. A thorough investigation of the spatially resolved time-evolution of optical and matter-wave fields is performed in the framework of the semiclassical Maxwell-Schroedinger equations. Our theory is not only able to explain many of the known experimental observations, e.g., the behavior of the atomic side-mode distributions, but also provides further detailed insights into the coupled dynamics of optical and matter-wave fields. To work out the significance of propagation effects, we compare our results to other theoretical models in which these effects are neglected.Comment: 14 pages, 13 figure

    Predicting the coherence resonance curve using a semi-analytical treatment

    Full text link
    Emergence of noise induced regularity or Coherence Resonance in nonlinear excitable systems is well known. We explain theoretically why the normalized variance (VNV_{N}) of inter spike time intervals, which is a measure of regularity in such systems, has a unimodal profile. Our semi-analytic treatment of the associated spiking process produces a general yet simple formula for VNV_{N}, which we show is in very good agreement with numerics in two test cases, namely the FitzHugh-Nagumo model and the Chemical Oscillator model.Comment: 5 pages, 5 figure

    Real space first-principles derived semiempirical pseudopotentials applied to tunneling magnetoresistance

    Get PDF
    In this letter we present a real space density functional theory (DFT) localized basis set semi-empirical pseudopotential (SEP) approach. The method is applied to iron and magnesium oxide, where bulk SEP and local spin density approximation (LSDA) band structure calculations are shown to agree within approximately 0.1 eV. Subsequently we investigate the qualitative transferability of bulk derived SEPs to Fe/MgO/Fe tunnel junctions. We find that the SEP method is particularly well suited to address the tight binding transferability problem because the transferability error at the interface can be characterized not only in orbital space (via the interface local density of states) but also in real space (via the system potential). To achieve a quantitative parameterization, we introduce the notion of ghost semi-empirical pseudopotentials extracted from the first-principles calculated Fe/MgO bonding interface. Such interface corrections are shown to be particularly necessary for barrier widths in the range of 1 nm, where interface states on opposite sides of the barrier couple effectively and play a important role in the transmission characteristics. In general the results underscore the need for separate tight binding interface and bulk parameter sets when modeling conduction through thin heterojunctions on the nanoscale.Comment: Submitted to Journal of Applied Physic

    Dual Brane Pairs, Chains and the Bekenstein-Hawking Entropy

    Full text link
    A proposal towards a microscopic understanding of the Bekenstein-Hawking entropy for D=4 spacetimes with event horizon is made. Since we will not rely on supersymmetry these spacetimes need not be supersymmetric. Euclidean D-branes which wrap the event horizon's boundary will play an important role. After arguing for a discretization of the Euclidean D-brane worldvolume based on the worldvolume uncertainty relation, we count chainlike excitations on the worldvolume of specific dual Euclidean brane pairs. Without the need for supersymmetry it is shown that one can thus reproduce the D=4 Bekenstein-Hawking entropy and its logarithmic correction.Comment: 14 pages, 1 figur

    Casimir forces in Bose-Einstein condensates: finite size effects in three-dimensional rectangular cavities

    Full text link
    The Casimir force due to {\it thermal} fluctuations (or pseudo-Casimir force) was previously calculated for the perfect Bose gas in the slab geometry for various boundary conditions. The Casimir pressure due to {\it quantum} fluctuations in a weakly-interacting dilute Bose-Einstein condensate (BEC) confined to a parallel plate geometry was recently calculated for Dirichlet boundary conditions. In this paper we calculate the Casimir energy and pressure due to quantum fluctuations in a zero-temperature homogeneous weakly-interacting dilute BEC confined to a parallel plate geometry with periodic boundary conditions and include higher-order corrections which we refer to as Bogoliubov corrections. The leading order term is identified as the Casimir energy of a massless scalar field moving with wave velocity equal to the speed of sound in the BEC. We then obtain the leading order Casimir pressure in a general three-dimensional rectangular cavity of arbitrary lengths and obtain the finite-size correction to the parallel plate scenario.Comment: 12 pages; no figures; v.2: version accepted for publication in JSTAT v.3: references adde

    Convective instability induced by nonlocality in nonlinear diffusive systems

    Get PDF
    We consider a large class of nonlinear diffusive systems with nonlocal coupling. By using a non-perturbative analytical approach we are able to determine the convective and absolute instabilities of all the uniform states of these systems. We find a huge window of convective instability that should provide a great opportunity to study experimentally and theoretically noise sustained patterns.Comment: 5 pages, accepted for publication in PR
    corecore