9 research outputs found

    Convulsant Doses of a Dopamine D1 Receptor Agonist Result in Erk-Dependent Increases in Zif268 and Arc/Arg3.1 Expression in Mouse Dentate Gyrus

    Get PDF
    Activation of dopamine D1 receptors (D1Rs) has been shown to induce epileptiform activity. We studied the molecular changes occurring in the hippocampus in response to the administration of the D1-type receptor agonist, SKF 81297. SKF 81297 at 2.5 and 5.0 mg/kg induced behavioural seizures. Electrophysiological recordings in the dentate gyrus revealed the presence of epileptiform discharges peaking at 30–45 min post-injection and declining by 60 min. Seizures were prevented by the D1-type receptor antagonist, SCH 23390, or the cannabinoid CB1 receptor agonist, CP 55,940. The effect of SKF 81297 was accompanied by increased phosphorylation of the extracellular signal-regulated protein kinases 1 and 2 (ERK), in the granule cells of the dentate gyrus. This effect was also observed in response to administration of other D1-type receptor agonists, such as SKF83822 and SKF83959. In addition, SKF 81297 increased the phosphorylation of the ribosomal protein S6 and histone H3, two downstream targets of ERK. These effects were prevented by genetic inactivation of D1Rs, or by pharmacological inhibition of ERK. SKF 81297 was also able to enhance the levels of Zif268 and Arc/Arg3.1, two immediate early genes involved in transcriptional regulation and synaptic plasticity. These changes may be involved in forms of activity-dependent plasticity linked to the manifestation of seizures and to the ability of dopamine to affect learning and memory

    Cannabinoid action depends on phosphorylation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa at the protein Kinase A site in striatal projection neurons

    No full text
    Herbal cannabis, smoked in the form of marihuana or hashish, is the most common illicit drug consumed in the Western world. In the brain, cannabinoids interact with neuronal CB1 receptors, thereby producing a marked reduction of motor activity. Here, we report that the motor depressant effect produced by the cannabinoid receptor agonist (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]trans-4-(3-hydroxypropyl)cyclohexanol (CP55,940) is attenuated by genetic inactivation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), which is abundantly expressed in the medium spiny neurons of the striatum. Point mutation of Thr34, the protein kinase A (PKA) phosphorylation site of DARPP-32, produces a similar reduction in the effect of the CB1 agonist. In contrast, point mutation of Thr75, a site on DARPP-32 specifically phosphorylated by cyclin-dependent kinase 5, does not affect the behavioral response to CP55,940. Activation of CB1 receptors, either by an agonist or by inhibition of reuptake of endogenous cannabinoids, stimulates phosphorylation at Thr34, thereby converting DARPP-32 into an inhibitor of protein phosphatase-1. Genetic inactivation either of dopamine D2 receptors or of adenosine A2A receptors reduces the phosphorylation of DARPP-32 at Thr34 and the motor depression produced by CP55,940. Our data indicate that a considerable proportion of the psychomotor effect of cannabinoids can be accounted for by a signaling cascade in striatal projection neurons involving PKA-dependent phosphorylation of DARPP-32, achieved via modulation of dopamine D2 and adenosine A2A transmission

    Signaling mechanisms in L-DOPA-induced dyskinesia

    No full text

    Advances in Stem Cell Research for Parkinson Disease

    No full text
    corecore